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Abstract

Motivated by Viennot’s Kepler towers, we introduce and study a family of related objects called
Kepler walls. Roughly speaking, a Kepler wall consists of rows of bricks in which no two bricks are
adjacent and every brick not in the top row is supported by a brick in the row above. We show that for a
variety of top rows the number of Kepler walls with n bricks is given by a binomial coefficient, by giving
a constructive bijection to an appropriate set of lattice paths. We also use Chebyshev polynomials of the
second kind and the transfer matrix method to obtain generating functions for various families of Kepler
walls of restricted width. In the process we find connections with Fibonacci numbers, order-consecutive
partitions, and walks in a certain path.

1 Introduction

Like many walls, Kepler walls are built of bricks, which in this case are line segments of length 1. Bricks in
a Kepler wall are arranged in rows in which the distance between the midpoints of any two distinct bricks
is an integer greater than one. Thus, each row is divided into brick spaces of length 1, each of which may
or may not contain a brick, with the restriction that two adjacent brick spaces cannot both contain bricks.
A Kepler wall is a stack of rows of bricks in which brick spaces are aligned vertically and every brick not in
the top row has a brick directly above, directly above and one space to its right, or directly above and once
space to its left. We give an example of a Kepler wall in Figure 1.

Figure 1: A Kepler wall.

Our interest in Kepler walls is due to their relationship with Kepler towers, which were first introduced
by Viennot and have recently been studied by Knuth [2]. A Kepler tower is a sequence of concentric circles,
called rings, each of which is divided into brick spaces. The rings in a Kepler tower come in groups of
consecutive rings, called turrets, which are numbered in order of increasing radii. Each ring in the kth turret
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of a Kepler tower has 2k brick spaces, one of which is designated the top space. The innermost ring in the
kth turret is required to contain 2k−1 bricks, one of which occupies the top space. All other rings in a turret
must contain at least one brick, no two bricks in a ring may occupy adjacent spaces, and if a brick is not in
the inner ring of its turret then it must be supported by a brick in the next smaller ring in the turret. In
Figure 2 we have an example of a Kepler tower with 11 bricks and 3 turrets, which have 2, 3, and 1 rings
respectively.

Figure 2: A Kepler tower.

Knuth has given [2] bijections between Kepler towers and several families of objects counted by the Cata-
lan numbers, so the number of Kepler towers with exactly n bricks is the Catalan number Cn = 1

n+1

(
2n
n

)
.

Unfortunately, these bijections are not simple, and the structure of a Kepler tower remains somewhat mys-
terious. In particular, it is not apparent from Knuth’s work how the number of Kepler walls is affected by
slight changes in their definition, such as requiring 3k brick spaces in each ring of the kth turret, or requiring
a different configuration of bricks in the innermost ring of each turret. In this paper we begin to build a
framework in which one can answer such questions. Since we may view a Kepler tower as an ordered tuple
of turrets, it is sufficient (from the point of view of generating functions) to consider a single turret. The
simplest such turret is one whose rings have infinite radius; these objects are our Kepler walls. To enumerate
them, we first consider the Kepler half-walls, which we define next.
Definition 1.1 A right Kepler half-wall is a Kepler wall with one top row brick space and no bricks to the
left of the root brick, which is the brick in the top row. A left Kepler half-wall is the reflection of a right
Kepler half-wall over a vertical line. We say a right (resp. left) Kepler half-wall is irreducible whenever the
only brick in the leftmost (resp. rightmost) column is the root.

In Section 2 we show that the number of irreducible right Kepler half-walls with n bricks is Cn−1 by
giving a bijection between these walls and the set of Dyck paths from (0, 0) to (2n, 0) which touch the x-axis
only at their endpoints. Although it follows immediately that there are Cn right Kepler half-walls with n
bricks, we prove this result by extending our original bijection to right Kepler half-walls. In the same way,
we give a bijection between Kepler walls with n bricks whose first row has one brick space and lattice paths
from (0, 0) to (2n, 0) which use only up (1, 1) and down (1,−1) steps and which begin with an up step. This
shows that there are

(
2n−1

n

)
such Kepler walls.

In Section 3 we use our bijection from Section 2 to study Kepler walls with bounded width. These are
more closely related to Kepler towers than unbounded Kepler walls, since they are essentially turrets (of
finite radius) which have been cut open between adjacent brick spaces and laid flat. Throughout the paper
we number the columns of a Kepler wall so that the column containing the unique top row brick is column 0,
and the other columns are numbered in increasing order from left to right. We first show that the ordinary

generating function for Kepler walls whose bricks lie weakly between columns 0 and m is
Um+1

“
1

2
√

x

”
√

xUm+1

“
1

2
√

x

” for

all m ≥ 0. Here Un(x) is the nth Chebyshev polynomial of the second kind, which may be defined by
Un(cos t) = sin((n+1)t)

sin(t) . We then show that for any k,m ≥ 0, the ordinary generating function for Kepler

walls whose bricks lie weakly between columns −k and m is
Uk+1

“
1

2
√

x

”
Um+1

“
1

2
√

x

”
Um+k+2

“
1

2
√

x

” . Using these results we

show that the number of Kepler walls with n bricks in which every brick is in columns 0, 1, or 2 is F2n−2,
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the number in which every brick is in columns −1, 0, or 1 is F2n−1, and the number in which every brick is
in columns −1, 0, 1, or 2 is 3n−1. Here Fn is the nth Fibonacci number, with initial conditions F0 = F1 = 1.
In the same way, we show that the number of Kepler walls with n bricks in which every brick is in columns
−2, −1, 0, 1, 2, or 3 is equal to the number of order-consecutive partitions of n (see [1]).

In Section 4 we study Kepler walls with n bricks which have k distinguishable top row brick spaces.
We first use our bijection from Section 2 to construct a bijection between these Kepler walls and the set
of lattice paths from (0, 0) to (n + k − 2, n), thus showing that there are

(
2n+k−2

n

)
of these walls. Next we

consider Kepler walls with k distinguishable top row brick spaces, some of which are required to contain
bricks. These are closely related to a turret of a Kepler tower, since the innermost ring of a given turret
(which corresponds to the top row of a Kepler wall) is required to have a specific brick pattern. We give a
bijection which reduces this case to the previous one, thus showing that these walls are also counted by a
binomial coefficient. We conclude the section by using inclusion-exclusion to enumerate Kepler walls whose
top row consists of two bricks separated by a given number of empty brick spaces.

In the last section we study Kepler walls with k distinguishable top row brick spaces which lie between
two given columns. Viewing such walls as sequences of rows of bricks, we explain how to use the transfer
matrix method to enumerate these walls based on their top and bottom rows. We use this technique to show
that the number of Kepler walls with n bricks and at most 3 columns is F2n+1, while the number of Kepler
walls with n bricks and at most 4 columns is 3n+1−1

2 . We also use this technique to show that the number
of Kepler walls with n bricks and at most 5 columns is the number of walks of length 2n + 5 in the path P6

which begin at the leftmost vertex and end at the rightmost vertex.

2 Walls Below One Brick

A (nonempty) binary tree is a tree with a unique root node, in which every node may have a left child, a right
child, both, or neither. A Dyck path is a lattice path which begins at (0, 0), ends on the x-axis, uses only up
(1, 1) and down (1,−1) steps, and never passes below the x-axis. We sometimes find it convenient to view
a Dyck path as a sequence of Us and Ds, corresponding to up and down steps, respectively. We say a Dyck
path is irreducible whenever it only touches the x-axis at its starting and ending points. It is well known
that the number of binary trees with n nodes and the number of Dyck paths which end at (2n, 0) are both
the Catalan number Cn. In this section we use binary trees and Dyck paths in the process of enumerating
Kepler walls with a single brick in their top rows. We begin by giving a bijection between irreducible right
half-walls and binary trees whose roots have no left subtree.

Suppose we have an irreducible right half-wall W on n bricks. The bricks in W will become the nodes
in W ’s binary tree, T . The parent of a brick b is the brick the fewest rows above b in either b’s column or
the column immediately to its left. In T , a node p corresponding to a brick p′ will have a child v whenever
v’s brick, v′, is p′’s child; v will be a left child if v′ is in p′’s column, and a right child if v′ is in the column
to the right of p′. It is easy to see that T is a binary tree whose root node does not have a left child. We
illustrate this process in Figure 3.

−→

r rr rr r
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��r
@@��r r

@@r
Figure 3: An irreducible right half-wall becomes a binary tree.

To find the irreducible Dyck path which corresponds to T , we use a recursively defined map α from
binary trees on n nodes to Dyck paths to (2n, 0). When n = 0, we must have α(∅) = ∅, and when n = 1 we
must have α(·) = UD. Now assume we have defined α from binary trees with k nodes to Dyck paths with
2k steps for all k < n. Let T denote a binary tree with n ≥ 2 nodes, let Tr denote the right subtree of the
root of T and let Tl denote the left subtree of the root of T . Then we define α(T ) = Uα(Tr)Dα(Tl). It is
routine to prove that α is a bijection, and we observe that α(T ) is an irreducible Dyck path if and only if
the left subtree of the root of T is empty, which occurs if and only if W is an irreducible right half-wall.
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Definition 2.1 For any irreducible right Kepler half-wall W with n bricks, we write ϕ(W ) to denote the
irreducible Dyck path with 2n steps obtained from W by the above process.
Theorem 2.2 For all n ≥ 0, the map ϕ is a bijection between irreducible right Kepler half-walls with n
bricks and irreducible Dyck paths with 2n steps.

Proof. Let γ denote the map described above from the set of irreducible right half-walls to the set of binary
trees for which ϕ = α ◦ γ. Since α is a bijection, it is sufficient to show that γ is also a bijection. To do this,
for each binary tree whose root has no left subtree we define an irreducible right half-wall γ−1(T ); we then
show that γ−1(γ(W )) = W for any irreducible right half-wall W and γ(γ−1(T )) = T for any binary tree T
whose root has no left subtree.

Suppose T is a binary tree whose root has no left subtree. The root node of T will correspond to the
root brick of γ−1(T ). To construct the rest of γ−1(T ), perform a depth-first search of T with right priority,
inserting a new brick in γ−1(T ) each time you search a node of T . If a node p in T has a left (resp. right)
child v, place v’s brick in the lowest supported position in p’s brick’s column (resp. the column immediately
to the right of p’s brick’s column).

To show that γ(γ−1(T )) = T for any binary tree T whose root has no left subtree, suppose T is such a
binary tree. Since T and γ(γ−1(T )) have the same number of nodes, we identify nodes in γ(γ−1(T )) with
nodes in T via γ ◦ γ−1. Now suppose b is a right child of p in T . When applying γ−1, we place b’s brick
immediately after placing p’s brick, so b will be a right child of p in γ(γ−1(T )). Similarly, suppose b is a
left child of p in T . Every brick we place between placing p’s brick and placing b’s brick will be placed in a
column strictly to the right of p’s brick’s column. Therefore b will be a left child of p in γ(γ−1(T )). Since T
and γ(γ−1(T )) have the same nodes and same relations between nodes, γ(γ−1(T )) = T .

To show that γ−1(γ(W )) = W for any irreducible right half-wall, suppose W is such a wall with
γ−1(γ(W )) 6= W . Note that W and γ−1(γ(W )) have the same number of bricks, and identify bricks in
W with bricks in γ−1(γ(W )) via γ−1 ◦ γ. Similarly, identify nodes in T = γ(W ) with bricks in W via γ.
Consider the first node v in our depth-first search of T which occurs in different positions in γ−1(γ(W )) and
W .

If v is a right child of a node p in T then in both W and γ−1(γ(W )), the brick v lies below p and in the
column immediately to the right of p’s column. In γ−1(γ(W )), the brick v is in the lowest supported position
in its column, so in W the brick v must be in a higher position in the same column. Since γ−1(γ(W )) is a
Kepler wall, v is supported by some brick in γ−1(γ(W )). If v is supported by a brick in the column to its left,
then v is supported by its parent in T . In this case v is above its parent in W , which is a contradiction. If v
is supported by a brick in its own column then v is a left child of that brick in T , which is a contradiction.
If v is supported by a brick u in the column to its right, then in W the brick v lies above u. In this case
the highest brick in u’s column which is below v in W is a child of v in T . But this brick was inserted in
γ−1(γ(W )) before v, which is a contradiction.

A similar argument shows that v cannot be a left child o a node in T , and it follows that γ−1(γ(W )) = W .
2

Notice that we now know that there are also Cn Kepler half-walls with n bricks: we can form a bijection
between irreducible half-walls with n bricks and half-walls with n − 1 bricks by simply removing the single
brick in the leftmost column of the irreducible half-wall. However, we obtain a different proof of this fact
by extending the map ϕ to a map from right Kepler half-walls to Dyck paths. To describe this extension,
note that we can decompose a given right Kepler half-wall W into a sequence of irreducible half-walls
W1,W2, . . . Wk by applying the parenting algorithm to all bricks except those in the leftmost column. We
see that the ith brick in the left column is the root of some irreducible right Kepler half-wall, Wi. To construct
the Dyck path P from (0, 0) to (2n, 0), apply ϕ to each Wi and place the resulting paths consecutively along
the x-axis.
Definition 2.3 For any right Kepler half-wall W with n bricks, we write φ(W ) to denote the Dyck path
with 2n steps obtained from W by the process described above.
Theorem 2.4 The map φ is a bijection from right Kepler half-walls with n bricks to Dyck paths with 2n
steps.

Proof. First note that every Dyck path P can be uniquely decomposed into a sequence of irreducible pieces.
Decompose P into its irreducible pieces P1, . . . , Pk, and find ϕ−1(Pi) for all i, 1 ≤ i ≤ k. To construct
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φ−1(P ), we will begin with ϕ−1(P1) and glue on ϕ−1(P2), ϕ−1(P3), . . . , ϕ−1(Pk) successively. Place the root
brick of ϕ−1(P2) in the lowest supported position in the 0th column of ϕ−1(P1), and place the top brick in
ϕ−1(P2)’s first column in the lowest supported position in the first column of ϕ−1(P1). Now, place all bricks
in the first column whose support in ϕ−1(P2) comes only from the first or 0th columns. In general, place
the top brick in the jth column of ϕ−1(P2) in the lowest supported position in the jth column of ϕ−1(P1),
and place all bricks from the columns less than or equal to j and whose supporting bricks from ϕ−1(P2)
are already in place. Append ϕ−1(P3), . . . , ϕ−1(Pk) in a similar fashion. We give an example of this gluing
process in Figure 4.

/ =

Figure 4: Gluing two right Kepler half-walls.

Note that if we apply the parenting algorithm to the bricks in φ−1(P ) belonging to ϕ−1(Pi) and to
ϕ−1(Pi) itself, we obtain the same parental relationships. So if we apply φ to φ−1(P ), we will recover the
sequence of irreducible half-walls ϕ−1(P1), . . . , ϕ−1(Pk). Since ϕ is a bijection, we have φ(φ−1(P )) = P .
Similarly, applying φ to a wall W will first give us a sequence of irreducible walls, W1, . . . ,Wk. If we then
apply φ−1 to φ(W ), we will recover the same sequence of irreducible half-walls upon applying ϕ−1 to the
irreducible pieces of φ(W ). Thus, φ−1(φ(W )) = W . 2

Corollary 2.5 The number of Kepler half-walls with n bricks is the nth Catalan number Cn.

Proof. This is immediate from Theorem 2.2. 2

We are now ready to look at a more general case: Kepler walls with one brick in their top row. We will
define a function from the set of Kepler walls below one brick to the set of lattice paths from (0, 0) to (2n, 0)
that use only the steps (1, 1) and (1,−1) and begin with an up-step. First, note that we can decompose
such a path into irreducible pieces above and below the x-axis, just as we decomposed a Dyck path into its
irreducible pieces.

This decomposition lends itself to the following map. Given a Kepler wall W , apply the parenting
algorithm described before Definition 2.1 to all bricks in columns with index i > 0. For the bricks in the
columns with index less than −1, apply the following modification of the parenting algorithm: for a brick b
in column i, look above b in columns i and i + 1 and assign the brick p that is closest in height to b to be b’s
parent. We have now partitioned our wall W into a collection of irreducible right half-walls and irreducible
left half-walls. We give an example of this process in Figure 5.

−→

r rrr rrr rr rr rr rr
HH

��
��

HH
��

HH

Figure 5: Decomposing a Kepler wall into binary trees.

Call the irreducible half-wall whose root brick lies in the first row W1. Find the next lowest brick in the
0th or −1st column and call its corresponding irreducible half-wall W2. Continue in this manner to get a
sequence W1,W2, . . . ,Wk of irreducible half-walls. Apply ϕ to each Wi, first reflecting Wi over a vertical line
whenever Wi is a left half-wall. We now have a sequence of irreducible paths ϕ(W1), . . . , ϕ(Wk). Line these
paths up consecutively beginning at (0, 0), reflecting ϕ(Wi) over the x-axis whenever Wi is a left half-wall.
By construction, we have a lattice path with 2n steps.
Definition 2.6 For any Kepler wall W with n bricks, we write Φ(W ) to denote the lattice path with 2n
steps obtained from W by the process described above.
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Theorem 2.7 The map Φ is a bijection from the set of Kepler walls with n bricks to the set of lattice paths
from (0, 0) to (2n, 0) which begin with an up step.

Proof. Let P be a path of the given type. To build Φ−1(P ), we first split P into its sequence of irreducible
Dyck paths P1, . . . , Pk that lie above and below the x-axis. We apply ϕ−1 to each Pi, reflecting each ϕ−1(Pi)
vertically whenever Pi lies below the x-axis. We paste these half-walls together as in the proof of Theorem
2.4: let the root brick of ϕ−1(P1) be the root of Φ−1(P ). In general, if Pi lies above the x-axis, place the
root of ϕ−1(Pi) in the lowest supported position in the 0th column of Φ−1(P ) and use the gluing algorithm
exactly as in the proof of Theorem 2.4. If Pi lies below the x-axis, place the root of ϕ−1(Pi) in the lowest
supported position in the −1st column of Φ−1(P ). For a general j ≥ 0, place the top brick in the jth column
of ϕ−1(Pi) in the lowest supported position in the −j − 1st column of Φ−1 and place the bricks that lie
in a column with index less than or equal to j and whose support is already in place. This process is the
“reflected” gluing algorithm and is directly analogous to the original gluing algorithm used in the proof of
Theorem 2.4.

By construction, if we apply the modified parenting algorithm to Φ−1(Φ(W )), we will see the same
parental relationships we saw in W , just as we did in the proof of Theorem 2.4. Thus, Φ−1(Φ(W )) = W and
a similar argument shows that Φ(Φ−1(P )) = P for any path P . 2

Corollary 2.8 The number of Kepler walls with n bricks which have one brick in the top row is
(
2n−1

n

)
.

Proof. This is immediate from Theorem 2.7. 2

3 Walls of Bounded Width

To this point we have allowed our Kepler walls to have any width. In this section we study Kepler walls of
restricted width, which are required to lie between fixed columns. To start, we show that for any Kepler
wall W , the map Φ translates column numbers of bricks in W to heights of steps in Φ(W ).
Proposition 3.1 Suppose m and k are nonnegative integers and W is a Kepler wall. Then the bricks of W
lie weakly between columns −k and m if and only if Φ(W ) does not cross the lines y = −k and y = m + 1.

Proof. Assign numbers to the nodes of a binary tree recursively so that the root has number 1, and if a
node has number a then its left child has number a and its right child has number a + 1. It is routine to
show that if a right Kepler half-wall W has binary tree T then the numbers on the nodes of T are each one
more than the column numbers of the associated bricks in W . It is also routine to show by induction that if
T is a binary tree then the largest number on any node of T is the maximum height of the associated Dyck
path α(T ). Now the result follows from the construction of Φ. 2

Proposition 3.1 allows us to use the combinatorics of lattice paths to obtain generating functions for
Kepler walls which lie between a given pair of columns. Our expressions for these generating functions
involve Chebyshev polynomials of the second kind, which are defined by Un(cos t) = sin((n+1)t)

sin t . It is routine
to show that U−1(x) = 0, U0(x) = 1, and

Un(x) = 2xUn−1(x)− Un−2(x) (n ≥ 1). (1)

We begin by considering Kepler half-walls of bounded width.
Theorem 3.2 For all m ≥ 0, let Fm(x) denote the ordinary generating function for the Kepler walls in
which every brick is weakly between columns 0 and m. Then

Fm(x) =
Um+1

(
1

2
√

x

)
√

xUm+2

(
1

2
√

x

) . (2)

Proof. We argue by induction on m. For each n ≥ 0 there is exactly one Kepler wall with n bricks in which
every brick is in column 0, so

F0(x) =
1

1− x
=

U1

(
1

2
√

x

)
√

xU2

(
1

2
√

x

) .
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Therefore (2) holds for m = 0.
Now suppose m ≥ 1. In view of Proposition 3.1, Fm(x) is the generating function for Dyck paths which

do not cross the line y = m + 1. For each such (nonempty) path π there are unique paths π1 and π2

such that π = Uπ1Dπ2, the path π1 does not cross y = m, and π2 does not cross y = m + 1. Therefore
Fm(x) = 1 + xFm−1(x)Fm(x), and by induction we have

Fm(x) =
1

1− xFm−1(x)

=
Um+1

(
1

2
√

x

)
Um+1

(
1

2
√

x

)
−
√

xUm

(
1

2
√

x

)
=

Um+1

(
1

2
√

x

)
√

xUm+2

(
1

2
√

x

) ,

where the last step follows from (1). 2

Corollary 3.3 For all n ≥ 1, the number of Kepler walls with n bricks in which every brick is in columns
0, 1, or 2 is F2n−2. Here Fn is the nth Fibonacci number, with initial conditions F0 = F1 = 1.

Proof. Set m = 2 in (2) to obtain

F2(x) =
1− 2x

1− 3x + x2
,

which is the generating function for 1, F0, F2, F4, . . .. 2

We now turn our attention to arbitrary width-restricted Kepler walls. To simplify our generating function
in this case we need the following well known identity involving Chebyshev polynomials.
Lemma 3.4 For all k, l ≥ −1 we have

Uk+1Ul+1 − UkUl = Uk+l+2. (3)

Here we abbreviate Un = Un

(
1

2
√

x

)
.

Proof. We argue by induction on k. Line (3) is immediate when k = −1 and follows from (1) when k = 0,
so suppose k ≥ 1. Use (1) to eliminate Uk+1 and Uk on the left side of (3). Now use induction and (1) twice
each to obtain (3). 2

Theorem 3.5 For all k, m ≥ 0, let Fk,m(x) denote the ordinary generating function for the Kepler walls in
which every brick is weakly between columns k and m. Then

Fk,m(x) =
Uk+1Um+1

Um+k+2
, (4)

where we have abbreviated Un = Un

(
1

2
√

x

)
.

Proof. In view of Proposition 3.1, Fk,m(x) is the generating function for lattice paths which begin with
an up step and which do not cross the lines y = −k and y = m + 1. Each such (nonempty) path consists
of an alternating sequence of positive and negative Dyck paths in which only the last path may be empty.
Therefore

Fk,m(x) = 1 + Fk−1(x)
∞∑

j=0

(Fm(x)− 1)j+1(Fk−1(x)− 1)j

= 1 +
(Fm(x)− 1)Fk−1(x)

1− (Fm(x)− 1)(Fk−1(x)− 1)

=
√

xUm+1Uk+1√
x(Um+2Uk + Um+1Uk+1)− Um+1Uk

,
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where the last step follows from (2). To simplify the denominator, use (1) to evaluate
√

xUm+1Uk+1−Um+1Uk

and then use (3) to simplify the result. 2

We conclude this section by using Theorem 3.5 to enumerate several families of width restricted Kepler
walls.
Corollary 3.6 For all n ≥ 1, the number of Kepler walls with n bricks in which every brick is in columns
−1, 0, or 1 is F2n−1. Here Fn is the nth Fibonacci number, with initial conditions F0 = F1 = 1.

Proof. Set m = k = 1 in (4) to obtain

F1,1(x) =
(1− x)2

1− 3x + x2
,

which is the generating function for 1, F1, F3, F5, . . .. 2

Corollary 3.7 For all n ≥ 1, the number of Kepler walls with n bricks in which every brick is in columns
−1, 0, 1, or 2 is 3n−1.

Proof. Set m = 2 and k = 1 in (4) to obtain

F2,1(x) =
1− 2x

1− 3x
,

which is the generating function for 1, 1, 3, 9, 27, . . .. 2

Corollary 3.8 For all n ≥ 1, the number of Kepler walls with n bricks in which every brick is in columns
−2, −1, 0, 1, 2, or 3 is equal to the number of order-consecutive partitions of n (see [1]). This is sequence
A007052 in [3].

Proof. Set m = 3 and k = 2 in (4) to obtain

F3,2(x) =
1− 3x + x2

1− 4x + 2x2
,

which is the generating function for the number of order-consecutive partitions of n. 2

4 Walls Below Many Bricks

In Sections 2 and 3 we studied Kepler walls with a single top row brick; in this section we turn our attention
to Kepler walls whose top rows may have several bricks. In other words, we now consider Kepler walls whose
top rows have several brick spaces. We will find it convenient throughout to consider these spaces to be
distinguishable. This means, for instance, that if the top row has five brick spaces, then it supports 5 =

(
5
1

)
Kepler walls with exactly one brick, 35 =

(
7
3

)
walls with exactly two bricks, and 126 =

(
9
5

)
walls with exactly

three bricks.
As these examples suggest, Kepler walls whose top rows have a given number of brick spaces are counted

by certain binomial coefficients. To prove this, we use our previous bijections to give a constructive bijection
between these new Kepler walls and an appropriate set of lattice paths.

To begin, suppose k ≥ 3 is odd, set k = 2m + 1, and suppose W is a wall whose top row has k brick
spaces. To construct the associated lattice path, first stack a pyramid of m + (m− 1) + . . . + 2 + 1 =

(
m+1

2

)
bricks atop the first row of W by placing bricks above spaces 2, 4, 6, . . . , 2m, and in the row above that bricks
above spaces 3, 5, . . . , 2m− 1, etc. Figure 6 shows the result of doing this when m = 5; here the dots in the
bottom row represent the brick spaces in the top row of W . The resulting wall W ′ is an ordinary Kepler
wall with n +

(
m+1

2

)
bricks, so Φ(W ′) is a lattice path with n +

(
m+1

2

)
up steps and n +

(
m+1

2

)
down steps.

Moreover, by the construction of W ′ and the definition of Φ the lattice path Φ(W ′) has the form

Umπ1D
mDm−1πc

2U
m−1Um−2π3D

m−2 · · ·D2πc
m−1U

2Uτ

if m is odd and
Umπ1D

mDm−1πc
2U

m−1Um−2π3D
m−2 · · ·U2πm−1D

2Dτ c

if m is even, where

8



r r r r r r r r r r r
Figure 6: Stacking a pyramid of bricks.

• π1, . . . , πm−1 are lattice paths which begin and end at height 0 and do not pass below height −1,

• τ is a lattice path which begins at height 0 and ends at height −1, and

• πc is the reflection of the lattice path π over the x-axis.

Figure 7 shows Φ(W ′) when m = 5.
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Figure 7: The shape of Φ(W ′) when m = 5.

To obtain an appropriate lattice path from Φ(W ′), we replace each string of the form Um+1−iπiD
m+1−i

with the string πiD
2 and we replace each string of the form Dm+1−iπi

cUm+1−i with the string πiD
2.

Geometrically, this amounts to reflecting each piece of the path that lies below the x-axis over the x-axis
and removing certain steps that are forced by the pyramid construction. Note that the resulting lattice path
has the form π1D

2π2D
2 · · ·πm−1D

2τ . This process removes m + (m− 1) + . . . + 2 + 1 =
(
m+1

2

)
up steps and

(m− 2) + (m− 3) + . . . + 2 + 1 =
(
m−1

2

)
down steps, so the resulting lattice path has exactly n up steps and

n + k − 2 down steps.
Definition 4.1 Suppose k ≥ 1 is odd and n ≥ 0. For each Kepler wall W with k brick spaces in its top row
and n bricks, we write Ψ(W ) to denote the lattice path with n up steps and n + k − 2 down steps obtained
by the process described above.
Theorem 4.2 Suppose k ≥ 1 is odd and n ≥ 0. The map Ψ is a bijection from the set of Kepler walls with
k top row brick spaces and n bricks to the set of lattice paths with n up steps and n + k − 2 down steps.

Proof. To show Ψ is a bijection, we construct Ψ−1. To this end, suppose π is a lattice path with n up
steps and n + k − 2 down steps, and fix m so that k = 2m + 1. We claim there exist unique lattice paths
π1, . . . , πm−1, τ such that

(i) π1, . . . , πm−1 begin and end at height 0 and never pass below height −1,

(ii) τ begins at height 0 and ends at height −1, and

(iii) π = π1D
2π2D

2 · · ·πm−1D
2τ .

9



To prove this claim, first note that if k = 3 then m = 1 so in this case we must take τ = π. Now observe
that if k > 3 then π must pass below height −1, and the first such crossing must consist of two consecutive
down steps. Let π1 denote the part of π preceding the first of these down steps, so that π = π1D

2π′. Note
that by construction π1 is a lattice path which begins and ends at height 0 and does not pass below height
−1 and π′ is a lattice path with k − 4 more down steps than up steps. Therefore, by induction on k there
exist lattice paths π2, . . . , πm−1, τ such that conditions (i)–(iii) above hold, and our claim follows.

Now set
η = Umπ1D

mDm−1π2
cUm−1Um−2π3D

m−2 · · ·D2πc
m−1U

2Uτ

if m is odd and
η = Umπ1D

mDm−1π2
cUm−1Um−2π3D

m−2 · · ·U2πm−1D
2Dτ c

if m is even. By construction Φ−1(η) is a Kepler wall whose first m rows are full; we define Ψ−1(π) to be
the Kepler wall obtained by removing these rows.

It is routine to verify that Ψ−1(Ψ(W )) = W for any Kepler wall W with k top row brick spaces and
Ψ(Ψ−1(π)) = π for any lattice path π with n up steps and n + k − 2 down steps. 2

When k = 2m is even and W is a Kepler wall with k top row brick spaces, we may again construct
a lattice path Ψ(W ) with n up steps and n + k − 2 down steps. This construction is analogous to the
construction of Ψ(W ) when k is odd, except in this case Ψ(W ′) begins with UmDπ1D

m instead of Umπ1D
m

and π1 begins at height −1 and ends at height 0. Thus we can enumerate Kepler walls with k top row brick
spaces for any k.
Corollary 4.3 For all n ≥ 0 and all k ≥ 1 there are exactly

(
2n+k−2

n

)
Kepler walls with k top row spaces

and n bricks.

Proof. This is immediate from Theorem 4.2 and the discussion following its proof. 2

Having enumerated Kepler walls with k top row brick spaces, any or all of which may be empty, we now
turn our attention to Kepler walls in which some of these top row brick spaces are required to contain bricks.
Notice that if a brick space adjacent to an end brick space in a row of brick spaces is required to contain
a brick then the corresponding end brick space must be empty. With this in mind, we say a set A of brick
spaces in a row is feasible whenever no two brick spaces in A are adjacent and A does not contain either
of the brick spaces adjacent to the end spaces in the row. Next we show that for any feasible set of top
row brick spaces, Kepler walls in which each brick space in the set contains a brick are also enumerated by
binomial coefficients.
Theorem 4.4 Fix m, k ≥ 0, let A denote a feasible set of m brick spaces in a row of m+k brick spaces, and
let d denote the number of brick spaces in A at the ends of the row. Then there is a constructive bijection
between the set of Kepler walls with m + k top row brick spaces and n + m bricks in which every space in A
contains a brick and the set of Kepler walls with m + k + d top row brick spaces and n bricks.

Proof. Suppose W is a Kepler wall with m+k top row brick spaces and n+m bricks in which every space in
A contains a brick. Color each brick in W red or blue, beginning with the bricks in the top row and moving
down, as follows.

• Color each brick which occupies a space in A red and color all other bricks in the top row blue.

• If a brick is supported by at least one blue brick then color it blue; color all other bricks red.

To obtain a new wall from W , first remove all of the red bricks from the top row, and then move each
remaining red brick up one row. Note that every brick not in the top row is still supported by a brick in
a row above. In addition, this process cannot create pairs of adjacent bricks, since moving a red brick to
a brick space adjacent to a blue brick can only occur if the red brick were originally supported by the now
adjacent blue brick. But such a brick would have been colored blue and not been moved. It follows that the
resulting object is a Kepler wall with m + k + d top row brick spaces and n bricks.

To reverse this process, suppose W is a Kepler wall with m + k + d top row brick spaces and n bricks.
Place a row of m + k empty brick spaces above the top row of W and insert m bricks in the spaces in A.
Color these bricks red. Color each remaining brick red or blue, moving down one row at a time, so that
every brick which is supported by a red brick is colored red and all remaining bricks are colored blue. To
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obtain a new wall from W , move each blue brick up one space. As before, the resulting object is a Kepler
wall with m + k top row brick spaces and n + m bricks in which every space in A contains a brick.

It is routine to verify that these two processes are inverses of one another. 2

Theorem 4.4 and Corollary 4.3 allow us to enumerate Kepler walls restricted by any feasible set.
Corollary 4.5 Let A denote a feasible set of m brick spaces in a row of m+k brick spaces, and let d denote
the number of brick spaces in A at the ends of the row. Then there are exactly

(
2n+m+k+d−2

n

)
Kepler walls

with m + k top row brick spaces and n + m bricks in which every space in A contains a brick.

Proof. This is immediate from Theorem 4.4 and Corollary 4.3. 2

Corollary 4.6 Fix m ≥ 1. For all n ≥ 0 there are exactly
(
2n−1
n−m

)
Kepler walls with n bricks whose top row

contains m bricks and m− 1 empty brick spaces.

Proof. Set k = m− 1 and d = 2 and replace n with n−m in Corollary 4.5. 2

Corollary 4.7 Fix k ≥ 1. For all n ≥ 0 there are exactly
(
2n+k−2

n−2

)
Kepler walls with n bricks whose top

row has a brick at each end and k additional brick spaces.

Proof. Set m = d = 2 and replace n with n− 2 in Corollary 4.5. 2

Corollary 4.5 also allows us to use inclusion-exclusion to enumerate Kepler walls with a predetermined
top row. As an example, we enumerate Kepler walls whose top row consists of two bricks with k empty brick
spaces between them.
Theorem 4.8 For all k ≥ 1 and all n ≥ 0 there are

b k−2
2 c∑

r=0

(−1)r

(
k − r − 1

r

)(
2n− 2r + k − 2

n + k − r

)
Kepler walls with exactly n bricks whose top row consists of two bricks with k empty brick spaces between
them.

Proof. Fix r, 0 ≤ r ≤ bk−1
2 c, and consider a row of k + 2 brick spaces. Let A denote a feasible set of

r + 2 brick spaces in this row which contains both end spaces. Set d = 2 and m = r + 2 and replace n with
n− r−2 and k with k− r in Corollary 4.5 to see that there are exactly

(
2n−2r+k−2

n+k−r

)
Kepler walls with bricks

in all of the brick spaces in A. Since there are
(
k−r−1

r

)
choices for A, by inclusion-exclusion there are

b k−2
2 c∑

r=0

(−1)r

(
k − r − 1

r

)(
2n− 2r + k − 2

n + k − r

)
Kepler walls with n bricks in which none of the brick spaces between the two bricks in the top row contains
a brick, as desired. 2

5 Walls of Bounded Width Below Many Bricks

In Section 3 we studied Kepler walls whose top row contains a single brick, and all of whose bricks lie between
two given columns. In Section 4 we studied Kepler walls whose top row contains several brick spaces, but
which have no width restriction. In this section we use the transfer matrix method to enumerate Kepler walls
whose bricks lie between two given columns, and whose top row may consist of any number of bricks which
will fit legally between these two columns. To set the stage, we give a weighted directed graph structure to
the set of possible rows in a Kepler wall of width w.
Definition 5.1 For any w ≥ 1, we write Vw to denote the set of nonempty rows of w bricks in which no
two bricks are adjacent. For all i, j ∈ Vw, we write i → j to indicate that when we place i above j, every
brick in j is supported by some brick in i. For all i ∈ Vw, we write br(i) to denote the number of bricks in i.
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The Kepler graph of width w is the edge-weighted directed graph with vertex set Vw whose adjacency matrix
Aw is given by

(Aw)ij =

{
xbr(j)−1 if i → j;
0 otherwise.

Suppose we are building a Kepler wall of width w by inserting new rows at the bottom of a partial wall.
Then the Kepler graph of width w describes how we may construct our wall, in the sense that if the bottom
row of our current wall is row i, then we may insert a row j below i if and only if i → j. This observation
allows us to formulate the following expression for the generating function for Kepler walls of width at most
w.
Proposition 5.2 Suppose w ≥ 1 and i, j ∈ Vw. Then the generating function for Kepler walls of width at
most w which begin with row i and end with row j is

∞∑
n=1

xbr(i)(An−1
w )ijx

n−1. (5)

Proof. Each such wall corresponds to a path in the Kepler graph of width w which begins at i and ends at
j: for each vertex in our path, we continue construction of our wall by making that vertex the new bottom
row. Each edge in such a path has a weight whose exponent is one less than the number of bricks the new
row contributes, so the total number of bricks in the wall is the sum of the number of edges in the path, the
number of bricks in i, and the exponents in the weights on the edges in the path. Thus the total weight of
all walls with n rows is the total weight of all paths with n vertices, which is xbr(i)(An−1

w )ijx
n−1, as desired.

2

To evaluate the generating function in Proposition 5.2, we recall the transfer matrix method, which we
paraphrase from [4].
Proposition 5.3 [4, Theorem 4.7.2] Suppose D is an edge-weighted directed graph with vertices 1, 2, . . . , n
and adjacency matrix A, so that Aij is the weight of the edge from i to j. Then for all i, j with 1 ≤ i, j ≤ n
we have

∞∑
n=0

(An)ijt
n =

(−1)i+j det(I − tA; j, i)
det(I − tA)

, (6)

where det(B; j, i) is the determinant of the matrix obtained by removing the jth row and ith column of B
and I is the n× n identity matrix.

In view of Propositions 5.2 and 5.3, the generating function for the number of Kepler walls with n bricks
and at most w columns is rational for all w ≥ 1. When w is small, these results allow us to find generating
functions for a variety of collections of width-restricted Kepler walls.
Theorem 5.4 For all n ≥ 0, the number of Kepler walls with n bricks and at most 3 columns is F2n+1.
Here Fn is the nth Fibonacci number, with initial conditions F0 = F1 = 1.

Proof. First note that if we order the elements of V3 so that the second row in V3 has a brick in its center
space and the fourth row in V3 has two bricks, then we have

A3 =


1 1 0 0
1 1 1 x
0 1 1 0
1 1 1 x

 .

If we sum (5) over all i, j with 1 ≤ i, j ≤ 4 and use (6) to simplify the result, we find that the ordinary
generating function for the number of Kepler walls with n bricks and at most 3 columns is x(1−x)

1−3x+x2 . This is
the generating function for F1, F3, F5, . . .. 2

Theorem 5.5 For all n ≥ 0, the number of Kepler walls with n bricks and at most 4 columns is 3n+1−1
2 .
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Proof. First note that if we order the elements of V4 appropriately then we have

A4 =



1 1 0 0 0 0 0
1 1 1 0 x 0 0
0 1 1 1 0 x 0
0 0 1 1 0 0 0
1 1 1 1 x x x
1 1 1 1 x x x
1 1 1 1 x x x


.

If we sum (5) over all i, j with 1 ≤ i, j ≤ 7 and use (6) to simplify the result, we find that the ordinary
generating function for the number of Kepler walls with n bricks and at most 4 columns is 1

1−4x+3x2 . This

is the generating function for
{

3n+1−1
2

}∞
n=0

. 2

Theorem 5.6 For all n ≥ 0, the number of Kepler walls with n bricks and at most 5 columns is the number
of walks of length 2n + 5 in the path P6 which begin at the leftmost vertex and end at the rightmost vertex.
This is sequence A005021 in [3].

Proof. This is similar to the proofs of Theorems 5.4 and 5.5, using the fact that for an appropriate ordering
of V5 we have

A5 =



1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 x 0 0 0 0 0 0
0 1 1 1 0 0 0 0 x 0 0 0
0 0 1 1 1 0 0 0 0 0 x 0
0 0 0 1 1 0 0 0 0 0 0 0
1 1 1 1 0 x x 0 x 0 0 0
1 1 1 1 1 x x x x x x x2

1 1 0 1 1 0 x x x x 0 0
1 1 1 1 1 x x x x x x x2

1 1 1 1 1 x x x x x x x2

0 1 1 1 1 0 0 0 x x x 0
1 1 1 1 1 x x x x x x x2



. (7)

2

Theorem 5.7 For all n ≥ 0, the number of Kepler walls with n bricks, at most 5 columns, and in which
the top row has a brick at each end and no other bricks, is equal to the number of walks of length 2n + 1 in
the path P6 with vertices {1, 2, 3, 4, 5, 6} which begin at 1 and end at 4. This is sequence A094789 in [3].

Proof. This is similar to the proofs of Theorems 5.4, 5.5, and 5.6, using (7). 2
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