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Complete Baxter Permutations

Definition

A permutation is called Baxter if it avoids the generalized patterns
3− 14− 2 and 2− 41− 3.

Definition

π is a complete Baxter permutation if for all i with 1 ≤ i ≤ |π|:
π(i) is even if and only if i is even

if π(x) = i , π(z) = i + 1, and y is between x and z , then π(y) < i if
i is even and π(y) > i + 1 if i is odd

Example
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Odd entries:

Determine a complete Baxter permutation

Commonly called (reduced) Baxter permutations
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Definition

If there exists a complete Baxter permutation π such that π1 and π2 are
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Compatibility

Definition

If there exists a complete Baxter permutation π such that π1 and π2 are
the permutations induced on the odd and even entries of π, respectively,
we say that π1 and π2 are compatible.

Examples

Baxter permutations compatible with unique anti-Baxter permutation

127654389

Anti-Baxter permutation may be compatible with multiple Baxter
permutations

127654389
125674389
127634589
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DABPs

Doubly Alternating Baxter Permutations

ascents and descents alternate in π, beginning with ascent

ascents and descents alternate in π−1, beginning with ascent

Baxter

Theorem [Guibert & Linusson, 2000]

The number of DABPs of length 2n is Cn, the nth Catalan number.
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Snow Leopard Permutations

Definition

We call the permutations of length n which are compatible with the
DABPs of length n + 1 the snow leopard permutations.

Examples

1
123, 321
12345, 14325, 34521, 54123, 54321

Properties

anti-Baxter

identity and reverse identity are always snow leopard

odd entries in odd positions, even entries in even positions



Decomposition of SLPs

Theorem [Caffrey, Egge, Michel, Rubin, Ver Steegh]

A permutation π of length 2n is an SLP if and only if there exists an SLP
σ of length 2n − 1 such that π = 1⊕ σc .

Theorem [Caffrey, Egge, Michel, Rubin, Ver Steegh]

A permutation π is an SLP if and only if there exist SLPs π1 and π2 such
that π = (1⊕ πc1 ⊕ 1)	 1	 π2.
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Theorem [Caffrey, Egge, Michel, Rubin, Ver Steegh]

A permutation π of length 2n is an SLP if and only if there exists an SLP
σ of length 2n − 1 such that π = 1⊕ σc .
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123c

21

587694321

(1⊕ 123c ⊕ 1)	 1	 21



Decomposition of SLPs

Theorem [Caffrey, Egge, Michel, Rubin, Ver Steegh]

A permutation π is an SLP if an only if there exist SLPs π1 and π2 such
that π = (1⊕ πc1 ⊕ 1)	 1	 π2.

Theorem [Caffrey, Egge, Michel, Rubin, Ver Steegh]

SLn:= the set of snow leopard permutations of length 2n − 1

|SL1| = 1, |SL2| = 2

|SLn+1| =
n∑

j=0

|SLj ||SLn−j |

|SLn| = Cn



Bijection with Catalan paths
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Bijection with Catalan paths

[ 8 3 6 5 4 7 2 1 0

d a d d a d d d
N N N E E E N E

]

1 2 3 4

1

2

3

4



Odd and Even Knots

Definition

We call the permutation induced on the even entries of an SLP π an even
knot (even(π)) and the permutation induced on the odd entries an odd
knot (odd(π)).

Examples

Odd knots: ∅, 1, 12, 21, 123, 231, 321, 321
Even knots: ∅, 1, 12, 21, 123, 132, 213, 231, 312, 321



Decomposition of Even and Odd Knots

Odd knot β

β = (1⊕ αc
1 ⊕ 1)	 β1 for odd knot β1 and even knot α1.

Even knot α

α = βc1 	 1	 α1 for odd knot β1 and even knot α1.

α1
c

β2

(a) Odd knot decomposition

β1
c

α1

(b) Even knot decomposition



What are the odd and even knots counted by?

n 0 1 2 3 4 5 6

|EKn| 1 1 2 6 17 46 128

|OKn| 1 1 2 4 9 23 63

Theorem [Egge, Rubin]

The odd knots of length n are in bijection with the set of Catalan paths of
length n which do not contain NEEN.

Theorem [Egge, Rubin]

The even knots of length n are in bijection with the set of Catalan paths
of length n + 1 which have no ascent of length exactly 2.
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Entangled Knots

Definition

We say that an even knot α and an odd knot β are entangled if there
exists an SLP π such that even(π) = α and odd(π) = β.

Theorem [Egge, Rubin]

The even knots of length n − 1 entangled with the identity permutation of
length n are the 3412-avoiding involutions of length n − 1.

Theorem [Egge, Rubin]

The odd knots of length n + 1 entangled with the reverse identity
permutation of length n are the complements of the 3412-avoiding
involutions of length n + 1.
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Entangled Knots

Corollary [Egge, Rubin]

The number of even knots of length n − 1 entangled with the identity
permutation of length n is Mn−1, where Mn is the nth Motzkin number.

Corollary [Egge, Rubin]

The number of odd knots of length n + 1 entangled with the reverse
identity permutation of length n is Mn+1.

Conjecture

For each even (resp. odd) knot, the number of entangled odd (resp. even)
knots is a product of Motzkin numbers.
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Open Questions

Is it true that for each knot the number of entangled knots is a
product of Motzkin numbers?

Can every knot be constructed from 3412-avoiding involutions using
just basic permutation constructions?

Are there relationships between natural statistics on lattice paths and
natural statistics on snow leopard permutations, even knots, or odd
knots?
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