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Abstract

Symmetric pattern-avoiding permutations are restricted permutations which are
invariant under actions of certain subgroups of D4, the symmetry group of a square. We
examine pattern-avoiding permutations with 180◦ rotational-symmetry. In particular,
we use combinatorial techniques to enumerate symmetric permutations which avoid one
pattern of length three and one pattern of length four. The resulting sequences involve
well-known sequences such as the alternating Fibonacci numbers, Catalan numbers,
triangular numbers, and powers of two.

Keywords: Fibonacci identity, pattern-avoiding permutation, restricted permuta-
tion, signed permutation, symmetric permutation.

1 Introduction and Notation

The one-line notation form of a permutation π of [n], where [n] = {1, 2, . . . , n}, is written
π(1)π(2) . . . π(n). For instance, if π is a permutation of [5] whose cyclic form is (13), then
π’s one-line notation form is 32145. In this paper, we will use Sn to refer to the set of
permutations of [n] written in one-line notation.

If π ∈ Sn and σ ∈ Sk, then π contains σ as a pattern if some subsequence of π of length
k has the same relative order as σ. For instance, since 5287 has the same relative order as
2143, the permutation 13524867 contains 2143. We say that π avoids σ whenever π does not
contain σ. For some set R of permutations (not necessarily of the same length), we let Sn(R)
denote the set of permutations of length n which avoid every pattern in R. Often braces
are omitted when the elements of R are included in this notation. For instance, 13524867
has no decreasing subsequence of length 3, so 13524867 ∈ S8(321), but it is not an element
of S8(2143). We will often refer to the elements of Sn(R) as pattern-avoiding permutations,
and the elements of R as forbidden patterns. If π contains σ, then the subsequence of π with
the same relative order as σ is called a σ subsequence.

The diagram of a permutation π ∈ Sn is formed by creating an n × n grid whose rows
and columns are labeled from 1 to n from bottom to top and left to right. A dot is placed
in the cell (i, j) exactly when π(i) = j. It is easy to see that π ∈ Sn contains σ ∈ Sk exactly
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Figure 1: 6152347 contains 213.

if we can choose some k rows and k columns from the diagram of π, the intersection points
of which form the diagram of σ. As the diagram in Figure 1 illustrates, 6152347 contains
213, since the intersections of the first, fifth and seventh columns with the third, sixth and
seventh rows form the diagram of 213.

The representation of a permutation on a square further motivates three common oper-
ations on permutations. For π ∈ Sn, the reverse of π is the permutation πr = π(n)π(n −
1) . . . π(2)π(1). That is, πr is the permutation whose diagram is obtained by reflecting the
diagram of π over a vertical axis. Similarly, the complement of π is the permutation whose
entries follow the formula πc(j) = n + 1− π(j). The diagram of πc is obtained from that of
π by reflection over a horizontal axis. Finally, the inverse of π, which we denote by πi, is
the inverse of π as a function, so if π(j) = k, then πi(k) = j. The diagram of πi is that of
π, reflected over the diagonal from the lower left corner to the upper right corner.

This set of operations, when considered as symmetries of a square, motivates a brief foray
into the algebra of dihedral groups. D4, the group of the eight symmetries of a square, is
well-known to be generated by the above mappings r, c, and i. We say that a permutation
is preserved under some symmetry g ∈ D4 if its diagram is unchanged by g. Equivalently, if
we consider D4 to be a group of actions on the set of diagrams of permutations in Sn, then
π ∈ Sn is preserved by g ∈ D4 if g is in the stabilizer of the diagram of π. Since the stabilizer
of a diagram is a subgroup of D4, we can consider the possible symmetries of a permutation
by considering the 10 distinct subgroups of D4.

Of course, many of these subgroups will be uninteresting to consider. For instance, for
n ≥ 2, no permutation in Sn is preserved by r, since the first and last elements in one-line
notation are never equal. There are four subgroups which are interesting to study, and
have been to various extents (a sample of the literature includes [2, 3, 4, 5]). In this paper
we will focus our attention on the subgroup {e, rc}, and label the set of permutations of
length n preserved by this subgroup Src

n . This is the set of permutations whose diagrams are
symmetric under a 180◦ rotation. For instance, 412563 ∈ Src

6 . Just as in Sn, we use Src
n (R)

to refer to the set of permutations of length n whose diagrams are symmetric under 180◦

rotation and which avoid every pattern in R. These sets have been enumerated for certain
R by Egge [3], in particular for all R ⊆ S3. In this paper we will enumerate Src

n (σ, τ) for all
σ ∈ S3 and τ ∈ S4.

We begin by counting Src
n itself. To this end, we introduce Bn, the set of signed permu-

tations of length n. An element π ∈ Bn is a permutation of [n] written in one-line notation
in which each entry of π may or may not have a bar over it. We note that Sn appears in Bn

as the set of signed permutations without bars. Since there are 2n choices for bar placement
and n! arrangements [n], it is easy to see that |Bn| = 2nn!.
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From this point forward in the paper, it will be much more common to refer to Src
2n and

Src
2n+1 than simply Src

n , since many arguments revolve heavily around parity. We now claim
that |Bn| = |Src

2n| = |Src
2n+1|, and we shall prove this through two bijections.

We first define s : Bn 7→ Src
2n by observing that a permutation in Src

2n is in fact determined
by its first n entries. We further observe that any of the first n entries of ρ ∈ Src

2n may
be in either the top-left or bottom-left quadrants, and that no row occupied in the top-left
quadrant may be the image under c of a row occupied in the bottom-left. This motivates
the following definition.

Definition 1.1 For π ∈ Bn, we define πs ∈ Src
2n as follows.

πs(j) =


π(j) if π(j) is barred and 1 ≤ j ≤ n
2n + 1− π(j) if π(j) is unbarred and 1 ≤ j ≤ n
2n + 1− π(2n + 1− j) if π(2n + 1− j) is barred and n + 1 ≤ j ≤ 2n
π(2n + 1− j) if π(2n + 1− j) is unbarred and n + 1 ≤ j ≤ 2n

Graphically, πs is the permutation whose diagram is obtained by placing the barred
entries of π in the lower-left quadrant of a 2n × 2n grid, placing the unbarred entries in
the top-left quadrant after reflection over the horizontal, and filling out the top-right and
bottom-right quadrants symmetrically. We next define u : Src

2n 7→ Src
2n+1 by observing that

for any ρ ∈ Src
2n+1, we have ρ(n + 1) = n + 1, since ρ(n + 1) = 2n + 2− ρ((2n + 2)− (n + 1)).

Then all that is left is to determine the other 2n rows and columns.
Definition 1.2 For π ∈ Src

2n, we define πu ∈ Src
2n+1 as follows.

πu(j) =


π(j) if 1 ≤ j ≤ n and 1 ≤ π(j) ≤ n
π(j) + 1 if 1 ≤ j ≤ n and n + 1 ≤ π(j) ≤ 2n
n + 1 if j = n + 1
π(j − 1) if n + 2 ≤ j ≤ 2n + 1 and 1 ≤ π(j) ≤ n
π(j − 1) + 1 if n + 2 ≤ j ≤ 2n + 1 and n + 1 ≤ π(j) ≤ 2n

We claim without proof that both s and u are bijections. A more rigorous definition and
a proof may be found in [3, Sec. 2]. In this paper, we will rarely refer to u, and will instead
refer to t : Bn 7→ Src

2n+1 defined by t = u ◦ s.
In this paper, we group our results by proof technique. In section 2, we consider the con-

ditions on π ∈ Bn such that πs and πt avoid some pattern σ. These results will often involve
reducing pattern avoidance to a question of which entries are barred, with the remaining
entries of the permutation mostly determined by the answer to this question. This method
is particularly helpful when the forbidden patterns are themselves symmetric under rc, and
can thus be represented as elements of Bk for various k.

We first take advantage of the restrictions imposed by the fact that πt(n + 1) = n + 1 to
show that

|Src
2n+1(123, 1432)| = |Sn(321, 4123, 2341)| = an (n ≥ 1),

where an is the sequence A116716 in Sloane [6].
By using a result from West [7], we next show that

|Src
2n+1(123, 2413)| = F2n−2 (n ≥ 1)
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where Fn is the n-th Fibonacci number, defined by F0 = 1, F1 = 1, and Fn+1 = Fn + Fn−1

for n ≥ 1. Then, by asking which entries are barred and using an apparently new Fibonacci
identity, we show that

|Src
2n(123, 2413)| = F2n (n ≥ 0).

We then use a similar bar-chasing technique and a result from Simion and Schmidt [5] to
find that

|Src
2n(123, 4231)| = n2 + 1 (n ≥ 0)

and

|Src
2n+1(123, 4231)| =

(
n

2

)
+ 1 (n ≥ 0).

A similar argument also shows that

|Src
2n(123, 3412)| = 2n+1 − (n + 1) (n ≥ 0)

and
|Src

2n+1(123, 3412)| = 1 (n ≥ 0).

In section 3, we enumerate permutations based on the position of the 1. Since this also
determines the position of 2n (or 2n + 1), conditioning on this value (strictly speaking,
π−1(1)) often produces simple information about the rest of the permutation, sometimes
inductively. We start out with an elementary argument that

|Src
2n(123, 4312)| = 6 (n ≥ 2)

and
|Src

2n+1(123, 4312)| = 1 (n ≥ 0).

We then use somewhat more complicated counting to show that

|Src
2n(123, 2431)| = Fn+2 + 1 (n ≥ 2)

and
|Src

2n+1(123, 2431)| = Fn+1 − 1 (n ≥ 1).

In the appendix, we prove the new Fibonacci identity used in Section 2, and we provide
a natural generalization.

2 Where the Wild Bars Are

Recall from the Introduction that for any n ≥ 0 and any set R of forbidden patterns we
write Src

n (R) to denote the set of permutations in Sn which are invariant under rc and which
avoid every pattern in R. In this section we demonstrate one proof technique that involves
determining conditions on π ∈ Bn such that πs ∈ Src

2n(R) or πt ∈ Src
2n+1(R). Often, we begin

by asking which entries are barred and where they are located. In Theorems 2.6 and 2.8,
knowing which entries are barred determines most of the information about π. In Theorems
2.14, 2.15, 2.20, and 2.21, this information completely determines π.
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It will be helpful to develop some notation for dealing with elements of Bn whose images
under s or t avoid certain patterns. For n ≥ 0 and some set R of patterns, we will let Bs

n(R)
denote the set of signed permutations of length n whose images under s avoid every pattern
in R. Bt

n(R) is defined similarly. Also, we say that some π ∈ Bn contains σ ∈ Bk as a
pattern whenever some subsequence of π has the same length and pairwise comparisons as
σ, and corresponding entries in both sequences are barred. For instance, if π = 3̄512̄4 then π
contains 12̄3 as a pattern but not 123. σ is a forbidden pattern of Bs

n(R) if whenever π ∈ Bn

contains σ as a pattern, πs contains some pattern from R. A forbidden pattern of Bt
n(R) is

defined analogously. Also, for π ∈ Bn, we define bar(π) to be the set of elements which are
barred in π. From our earlier example, bar(π) = {2, 3}.

For our first results, we show that counting permutations in Src
2n+1(R) can be reduced to

known enumerative results when R contains permutations of a certain type which we now
define.

Definition 2.1 We say a permutation π ∈ Sn is skew decomposable at index k whenever
there exists an index k such that for all 1 ≤ i ≤ k < j ≤ n, we have π(i) > π(j). We
say π is skew indecomposable whenever π cannot be skew decomposed. Furthermore, if π
is skew decomposable at index k, then we say π = σ 	 τ , where σ is the relative order of
π(1)π(2) . . . π(k) and τ is the relative order of π(k+1)π(k+2) . . . π(n). We call σ and τ the
summands of π.

Example 2.2 π = 35412 = 132 	 12 is skew decomposable at index 3. 2413 is skew inde-
composable.

t
t t

t t
35412

t
t

t
t

2413

The following lemma by Egge ([3, Lem 2.11]) will be quite useful in this section, as we
are dealing with symmetric permutations which avoid sets including 123. We use it to prove
Lemma 2.4 which is a slightly stronger case.

Lemma 2.3 If 123 ∈ R and π ∈ Bt
n(R), then bar(π) = ∅.

Proof. The negation of this lemma implies there exists k ∈ bar(π). But k, n + 1, 2n + 2− k
is a 123 subsequence. 2

Lemma 2.4 Suppose R is a set of skew indecomposable permutations. For all π ∈ Bn, the
following are equivalent.

(i) πt ∈ Src
2n+1(123 ∪R).

(ii) π ∈ Sn(321 ∪Rc ∪Rr), where Rc = {σc|σ ∈ R} and Rr = {σr|σ ∈ R}.

Proof. (i) =⇒ (ii) Suppose π ∈ Bn and πt ∈ Src
2n+1(123 ∪ R). Then by Lemma 2.3 we have

bar(π) = ∅, which implies π ∈ Sn(321). If π contains σc ∈ Rc then by construction πt will
contain (σc)c = σ ∈ R, which is forbidden. Similarly, if π contains σr ∈ Rr, then πt contains
σrc. But πt is invariant under rc, so πt also contains (σrc)rc = σ, which is forbidden.
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(ii) =⇒ (i) Suppose πt contains σ ∈ 123 ∪ R. Since π ∈ Sn, every entry to the left of
πt(n+1) = n+1 is larger than every entry to the right of n+1. This implies that πt is skew
decomposable. Since σ is skew indecomposable, either σ is contained entirely to the left or
entirely to the right of n + 1. If σ is entirely to the left of n + 1, then by construction π
contains σc. If σ is entirely to the right of n+1, then σrc (the rotated image of σ) is entirely
to the left of n + 1. In this case π contains (σrc)c = σr. 2

With these lemmas in hand, we show how enumerating Src
2n+1(123, 1432) is easily reduced

to a known result.

Theorem 2.5 For all n ≥ 1,

|Src
2n+1(123, 1432)| = |Sn(321, 4123, 2341)| = an, (1)

where an is the sequence A116716 in Sloane [6], with generating function x(x+1)(x3−2x2+x−1)
(x2+1)(x3−x2−2x+1)

.

Proof. Because 1432 is skew indecomposable, Lemma 2.4 tells us that t is a bijection from
Sn(321, 4123, 2341) to Src

2n+1(123, 1432), and (1) follows from Pudwell’s enumeration of this
set. 2

We note that we have no enumeration for Src
2n(123, 1432). This remains an open problem.

Next, we enumerate Src
n (123, 2413) using a similar technique.

Theorem 2.6 For all n ≥ 1,

|Src
2n+1(123, 2413)| = F2n−2. (2)

Proof. Note that 2413 is skew indecomposable. So by Lemma 2.4, t is a bijection from
Sn(321, 3142) to Src

2n+1(123, 2413). Thus |Src
2n+1(123, 2413)| = |Sn(321, 3142)|, and (2) follows

from [7, Table 1]. 2

The even case is a bit more difficult, so we first prove the following lemma.
Lemma 2.7 Fix n ≥ 0 and π ∈ Bn. Then the following are equivalent.

(i) πs ∈ Src
2n(123, 2413)

(ii) π avoids 321, 3142, 12, 12, 21, 312, 321.

Proof. (i) =⇒ (ii) Note that 321c = 123 and 3142c = 2413 so clearly π must avoid these
patterns. For the remaining arguments, see the accompanying figures. In each figure, a
pattern and its image under rc are shown. The filled in circles indicate the occurrence of a
forbidden pattern.

r r r b

1̄2̄

r
r b

r

1̄2

r
r

r
r

2̄1

r r r
r bb
312̄

r r r
bbb

321̄
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Figure 2: The general form of πs ∈ Src
2n(123, 2413)

(ii) =⇒ (i) To show that avoiding the above patterns is sufficient, we show that πs must
be of the form shown in Figure 2. In this diagram, the boxes represent subpermutations
which avoid 123 and 2413 and the parallel lines mean that a dot in a given row could be
located on one line or the other.

First, if bar(π) = ∅, then π ∈ Sn(321, 3142) and the square subpermutation fills the
entire left quadrant in the diagram above. Otherwise, bar(π) is non-empty, and it contains a
smallest element, call it k. Then bar(π) is a freely chosen subset of {k, k+1, . . . , n}. We have
shown that π avoids 1̄2, 1̄2̄, and 2̄1, which implies that all of the elements of bar(π) must
appear at the right end of π and in decreasing order. Furthermore, the unbarred elements
of {k + 1, k + 2, . . . , n} must appear in ascending order immediately preceding the barred
elements, or else we get a 321 or 312, which are also forbidden. Finally, the elements in [k−1]
need to be arranged to avoid 321 and 3142. These conditions, along with rc-symmetry, do
indeed force πs into the above form. One can easily check that a permutation of the above
form avoids 123 and 2413, and we are done. 2

Theorem 2.8 For all n ≥ 0,
|Src

2n(123, 2413)| = F2n. (3)

Proof. As we saw in Lemma 2.7, if πs ∈ Src
2n(123, 2413) and bar(π) = ∅, then π ∈

Sn(321, 3142), and this yields F2n−2 permutations by [7, Table 1]. As before, if bar(π) is
non-empty, let k be its smallest element. Then bar(π) ⊆ {k, k + 1, . . . , n} which can be
chosen in 2n−k ways. The proof of Lemma 2.7 tells us that everything is determined besides
the order of [k − 1], which must be arranged to avoid 321 and 3142. This can be done in
F2(k−1)−2 = F2k−4 ways (again by [7, Table 1]). Summing over all positive k, we get

|Src
2n(123, 2413)| = F2n−2 +

n∑
k=1

F2k−42
n−k

which evaluates to F2n, a result which we prove in the Appendix. 2

Next, we turn our attention to Src
n (123, 4231), which is determined solely by which entries

in π are barred.

Lemma 2.9 If π ∈ Bs
n(123, 4231), then bar(π) consists of a single (possibly empty) set of

consecutive integers.

Proof. Suppose not, so there exists i < j < k such that i, k ∈ bar(π), j /∈ bar(π). If k
precedes j, then k 2n+1− j 2n+1− i is a 123 subsequence. If j precedes k, then 2n+1− j
k 2n + 1− k j is a 4231 subsequence. 2
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Lemma 2.10 The following are all forbidden patterns of Bs
n(123, 4231).

(i) 1 2

(ii) 1 2

(iii) 1 2

(iv) 3 2 1

(v) 3 2 1

Proof. As in the proof of Lemma 2.7, the proof of each is shown in the accompanying figures.

r r r b

1̄2̄

r
r r

r
12̄

r
r b

r

1̄2

r
r r

b
bb

3̄21

r r r
bbb

321̄
2

Lemma 2.11 If π ∈ Bs
n(123, 4231) and bar(π) 6= ∅, then π is uniquely determined by

min(bar(π)) and max(bar(π)), where 1 ≤ min(bar(π)) ≤ max(bar(π)) ≤ n.

Proof. By Lemma 2.9, bar(π) = N ∩ [min(bar(π)), max(bar(π))]. By Lemma 2.10 (i),
the elements of bar(π) appear in π in decreasing order. By (ii), the elements less than
min(bar(π)) appear after min(bar(π)), and by (iv) they appear in ascending order. By (iii),
the elements greater than max(bar(π)) appear before max(bar(π)), and by (v) they appear
in ascending order. 2

Lemma 2.12 For all n ≥ 1, we have

|Bs
n(123, 4231) \ Sn| =

(
n + 1

2

)
. (4)

Proof. There are
(

n+1
2

)
ways to pick min(bar(π)) and max(bar(π)). By Lemma 2.11, this

forces the rest of the permutation. The result will be of the form shown in Figure 3, which
it is easy to see avoids both 123 and 4231. 2

Lemma 2.13 For all n ≥ 1,

Bs
n(123, 4231) ∩ Sn = Sn(321, 132). (5)

Proof. (⊆) 321s contains a 123 subsequence, and 132s contains a 4231 subsequence.
(⊇) Sn(321, 132) ⊆ Sn is trivial. Furthermore, suppose π ∈ Sn(321, 132) and π /∈

Bs
n(123, 4231), so π contains a 123 or 4231 subsequence. Since both 123 and 4231 are

180◦-symmetric, we may assume that at least half of either sequence falls in the first half
πs, and in particular the upper-left quadrant (since bar(π) = ∅). If the 12 of the 123 falls
in the upper left, then so does the 3, since it cannot be less than the 2. This implies that π
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Figure 3: The general form of π ∈ Src
2n(123, 4231).

contains 321. Likewise, if the 42 of the 4231 appears in the upper left, then so does the 3,
but 423 in πs corresponds to a 132 subsequence in π. 2

In view of (5) it is useful to recall that |Sn(132, 321)| =
(

n
2

)
+ 1, which was first proved

by Simion and Schmidt [5, Prop. 11].

Theorem 2.14 For all n ≥ 0,

|Src
2n(123, 4231)| = n2 + 1. (6)

Proof. We have

|Src
2n(123, 4231)| = |Bs

n(123, 4231)|
= |Bs

n(132, 4231) \ Sn|+ |Bs
n(132, 4231) ∩ Sn|

=

(
n + 1

2

)
+

(
n

2

)
+ 1 (by (4) and [5, Prop. 11])

= n2 + 1.

2

Theorem 2.15 For all n ≥ 0,

|Src
2n+1(123, 4231)| =

(
n

2

)
+ 1. (7)

Proof. This is immediate from Lemma 2.3, equation (5), and [5, Prop. 11]. 2

Next, we turn to Src
n (123, 3412).

Lemma 2.16 The following are forbidden patterns of Bs
n(123, 3412).

(i) 2 1

(ii) 1 2

Proof. The proof is shown in the accompanying diagrams.
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21

r r r b

1̄2̄ 2

Lemma 2.17 If π ∈ Bs
n(123, 3412), i < j, i ∈ bar(π), and j /∈ bar(π), then j precedes every

barred entry in π.

Proof. Suppose some k̄ precedes j. Then k, 2n + 1− j, 2n + 1− i is a 123 subsequence. 2

Lemma 2.18 If π ∈ Bs
n(123, 3412) and bar(π) is not of the form [n]\ [k] for any 0 ≤ k ≤ n,

then π is completely determined by bar(π).

Proof. Since bar(π) is not of the above form, the hypothesis of Lemma 2.17 is true for
j = max([n] \ bar(π)) and i = min(bar(π)). So j must precede every barred entry in π.
Furthermore, by Lemma 2.16, the unbarred entries must appear in ascending order and
the barred entries must appear in descending order. Thus j must appear last among the
unbarred entries, so all unbarred entries must precede all barred entries. 2

Lemma 2.19 If π ∈ Bs
n(123, 3412) and bar(π) is of the form [n] \ [k] for some 0 ≤ k ≤ n,

then π is determined by the choice of which positions in π are unbarred and which are barred.

Proof. Once it is determined where the barred and unbarred entries go, then it is simply
a matter of placing the lowest k numbers in ascending order in the unbarred positions and
the highest n− k terms in descending order in the unbarred positions. This is sufficient for
πs to avoid 123 and 3412. 2

Theorem 2.20 For all n ≥ 0, we have

|Src
2n(123, 3412)| = 2n+1 − (n + 1). (8)

Proof. We prove (8) by counting the choices for π ∈ Bs
n(123, 3412). From Lemma 2.18,

there are 2n choices for bar(π), but n + 1 of them are of the form [n] \ [k]. Those of such a
form are determined instead by the 2n choices for which positions in π are barred. In total,
then, |Src

2n(123, 3412)| = 2n − (n + 1) + 2n = 2n+1 − (n + 1). 2

Theorem 2.21 For all n ≥ 0,

|Src
2n+1(123, 3412)| = 1. (9)

In particular, if π ∈ Src
2n+1(123, 3412) then π = 2n+1 2n 2n−1 . . . 2 1.

Proof. By Lemma 2.3, no entries of π ∈ Bt
n(123, 3412) may be barred, and by the same

argument from Lemma 2.16(i) all unbarred entries must appear in ascending order. This
leaves exactly one choice for πt, namely the permutation 2n+1 2n 2n−1 . . . 2 1. 2

Next, we look at sets of symmetric permutations that avoid 132 and a pattern of length
four. The following lemma will be quite useful in enumerating these permutations, and we
prove it using techniques from this section.
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Lemma 2.22 Fix n ≥ 0, and R a set of permutations with 132 ∈ R. Then the following
are forbidden patterns in Bs

n(R) and Bt
n(R).

(i) 1̄2

(ii) 2̄1

(iii) 21̄

(iv) 2̄1̄

Proof. See the accompanying diagrams.

r
r b

r
1̄2

r r rb
2̄1

r
b r

r
21̄

b r
rr

2̄1̄ 2

Lemma 2.23 Fix n ≥ 0, and suppose R is a set of patterns with 132 ∈ R. If π ∈ Bs
n(R) or

π ∈ Bt
n(R), then bar(π) = [n] \ [k] for some k, with 0 ≤ k ≤ n.

Proof. Suppose this were not the case. Then there exist a and b, with a < b < n, where
a, n ∈ bar(π) and b /∈ bar(π). But Lemma 2.22(i) and (ii) imply that all the barred entries
of π appear to the right of the unbarred entries, so a appears to the right of b. But then bā
is of type 21̄, which is forbidden by Lemma 2.22(iii). 2

Theorem 2.24 For all n ≥ 0,

|Src
2n(132, 3412)| = |Src

2n+1(132, 3412)| = n + 1. (10)

Proof. We claim that for each k, 0 ≤ k ≤ n, the set [n] \ [k] is the set of bars in exactly one
permutation π ∈ Bs

n(132, 3412), namely π = 12 . . . k k+1 k+2 . . . n. We already know from
Lemma 2.23 that bar(π) is of the from [n] \ [k], and from Lemma 2.22 that all the barred
entries are to the right of the unbarred entries and in increasing order. Similarly, all the
unbarred entries must be increasing, or else we get a 3412 subsequence:

r r
rr

21
Thus, the form above is forced. Since each value of k, with 0 ≤ k ≤ n, yields a permutation,
we have |Src

2n(132, 3412)| = n + 1. It is straightforward to check that π ∈ Bs
n(132, 3412) if

and only if π ∈ Bt
n(132, 3412), which completes the proof. 2

Now, we present another similar result.
Theorem 2.25 For all n ≥ 0,

|Src
2n(132, 4321)| = |Src

2n+1(132, 4321)| = n + 1. (11)

11



Proof. The proof of (11) is similar to the proof of (10) except all unbarred entries in
π ∈ Bs

n(132, 3412) (or π ∈ Bt
n(132, 3412)) must be descending to avoid 4321. 2

The last set we examine in this section is Src
n (132, 4231). This set has slightly different

restrictions than our last two, so we first prove the following lemma.

Lemma 2.26 If π ∈ Bs
n(132, 4231) or π ∈ Bt

n(132, 4231), then bar(π) = ∅ or bar(π) = [n].

Proof. This diagram shows that 12̄ is a forbidden subsequence of π ∈ Bs
n(132, 4231) and

π ∈ Bt
n(132, 4231): r

r r
r

12̄
Suppose π ∈ Bs

n(132, 4231) (or π ∈ Bt
n(132, 4231)) and π(a)π(b) is a subsequence in

which exactly one of π(a) and π(b) is barred. If π(a) is barred, then π(a)π(b) is either a 1̄2
or 2̄1 subsequence, which are both forbidden by Lemma 2.22. If π(b) is barred, then π(a)π(b)
is a 12̄ or 21̄ subsequence, which are forbidden above and by Lemma 2.22, respectively. The
result follows. 2

Theorem 2.27 For all n ≥ 0,

|Src
2n(132, 4231)| = |Src

2n+1(132, 4231)| = n + 1. (12)

Proof. Suppose π ∈ Bs
n(132, 4231). By Lemma 2.26, there are two cases to consider:

bar(π) = [n] and bar(π) = ∅. If bar(π) = [n], then π = 1̄2̄ . . . n̄ by Lemma 2.22, and πs is
the identity permutation. If bar(π) = ∅, we claim that π ∈ Sn(312, 132, 231):

r r r bbb
312

r r r
bbr

132

b b b
rrr

231
π ∈ Sn(312, 132, 231) implies that πs is of the following form.

�
�

�

@
@@

�
�

�

One can easily verify that permutations of the above form avoid 132 and 4231. Thus,

|Src
2n(132, 4231)| = 1 + |Sn(312, 132, 231)| = 1 + n,

where the last equality is shown by taking the reverse of the permutations in [5, Prop. 16∗,
C]. One can easily verify that π ∈ Bs

n(132, 4231) if and only if π ∈ Bt
n(132, 4231), and the

proof is complete. 2
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3 Where Number 1?

In this section we base our proofs on asking what positions the 1 can be in and then enumer-
ating each resulting case. Our next theorem is a straight-forward use of this case analysis.

Theorem 3.1 For all n ≥ 0,
|Src

2n+1(123, 4312)| = 1, (13)

and for all n ≥ 2,
|Src

2n(123, 4312)| = 6. (14)

In particular, if π ∈ Src
2n+1(123, 4312), then π = 2n 2n− 1 . . . 2 1.

Furthermore, if π ∈ Src
2n(123, 4312), then π is one of the following.

(i) n . . . 1 2n . . . n+1

(ii) n+1 n−1 . . . 1 2n . . . n+3 n+2 n

(iii) n . . . 2 2n 1 2n−1 . . . n+1

(iv) n+1 n− 1 . . . 2 2n 1 2n−1 . . . n+2 n

(v) 2n n . . . 2 2n−1 . . . n+1 1

(vi) 2n . . . 1

Proof. Suppose π ∈ Bt
n(123, 4312). We claim that π = 123 . . . n. From Lemma 2.3, π ∈ Sn.

Now suppose that π contains a descent π(a)π(b). Then πt(a)πt(b) is an ascent (as is their
image under rc), and πt(a)πt(n+1)πt(2n+2−a)πt(2n+2− b) is a 4312 subsequence. Thus,
π is entirely increasing, and (13) follows.

Now consider π ∈ Src
2n(123, 4312). We claim that there are only three possible values for

π−1(1) (the location of 1 in π): n, n + 1, and 2n. The argument appears in the diagrams
below. In diagram (i), we see that if 1 is located to the left of position n, we get a 123
subsequence. In diagrams (ii) and (iii) we claim to cover all the cases when 1 is between
n + 1 and 2n. Notice that there must be some element between 2n and 1, call it j, because
π−1(1) > n+1. Furthermore, there must be some element to the right of 1, call it k, because
π−1(1) < 2n.

Consider j along with its image under rc, call it j′. These elements can either be increas-
ing or decreasing, as shown in the second and third diagrams, respectively. Also, consider
the location of k. If k < j, then k is in box A. If k > j, then k is in box B. In both (ii) and
(iii), if k is in box A, then 2n j 1 k form a 4312-type subsequence. In (ii), if k is in box B,
then j′ j k form a subsequence of type 123. Finally, in (iii), if k is in box B, then the k’s
image, say k′ is in B′, and k′ j k form a 123 subsequence.

s

ss
c

(i) π−1(1) < n

c

c
cjcj′

A

B

(ii) n + 1 < π−1(1) < 2n

c

c
cj cj′

A

B

B′

(iii) n + 1 < π−1(1) < 2n

13



Since there are only three possible locations for the 1, we claim that the following six
diagrams represent the only six diagrams in S2n(123, 4312) for all n ≥ 2.

s s s s

s s s s s s s

s

s

s s s
s

s s s
s s s

s
s s s s

s s s s
(i) π−1(1) = n

s s s

s

s

s s s
(ii)π−1(1) = n + 1

s s s s s s s s
(iii) π−1(1) = 2n

In the first two cases, all elements to the left of 1 and 2n must be descending or else an
ascent with 2n forms a 123 subsequence. It follows by symmetry that all elements to the
right of 1 and 2n must be descending as well. At most one element to the left is greater
than any element to the right, or else we’d have i and j to the left of 1 both greater than k
to the right, but i, j in order is a decrease, so i, j, 1, k is a 4312 subsequence. By symmetry
this produces exactly two results in each case. In the third case, we need only require that
the inner 2n − 2 length permutation avoids 123 and 312 for which there are 2 solutions by
Egge [3, Thm 2.10 (iv)]. 2

Next, we enumerate Src
n (123, 2431) by conditioning on the location of the 1.

Lemma 3.2 If π ∈ Src
2n(123, 2431) and π−1(1) = k > n + 1, then for all i < k < j, we have

π(i) > π(j).

Proof. Suppose not, so there exist i, j such that i < k < j and π(i) < π(j). If 2n + 1− k <
i < k, then π(j), 2n, π(i), 1 is a 2431 subsequence. If not, then i < 2n + 1− k. In that case,
if π(i) ≤ n, then since k > n + 1, there exists an element l such that 2n + 1− k < l < k, and
by symmetry we may assume π(l) ≥ n + 1. Now π(i), 2n, π(l), 1 forms a 2431 subsequence.
Finally, if π(i) ≥ n + 1, then since π(j) > π(i), π(j) > n + 1. If 2n + 1 − i < j, then
1, π(2n + 1− i), π(j) forms a 123 subsequence. Otherwise, π(i), 2n, π(j), π(2n + 1− i) forms
a 2431 subsequence. This exhausts all the cases. 2

Lemma 3.3 If π ∈ Src
2n(123, 2431) and π−1(1) = k > n + 1, then π = 2n − 1 2n −

2 . . . k 2n σ 1 2n + 1− k . . . 3 2, where σ ∈ Src
2(k−n−1)(123, 132).

Proof. By Lemma 3.2, the last 2n−k+1 elements exactly comprise the set [k]. Furthermore,
since π(k) = 1, all the elements after k must appear in decreasing order, or else there exists
a 123 subsequence. By symmetry, this completes the proof up to the identity of σ. Clearly
σ ∈ Src

2(k−n−1)(123, 132), since 123 is forbidden in π, and a 132 subsequence in σ along with

π(k) = 1 would produce a 2431 subsequence. This is also sufficient: π does not contain 123,
since the elements before σ are all greater than σ and avoid 123, and the elements after σ
are all less than σ and also avoid 123. Furthermore, 2431 is only skew decomposable into
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243 and 1, so the only way a 2431 subsequence could appear is if some section of π contained
132. 2

Lemma 3.4 If π ∈ Src
2n(123, 2431) and π−1(1) = n or n + 1, then either

(i) For all i < n and j > n + 1, we have π(i) > π(j)

or

(ii) For all i < n and j > n + 1, we have π(i) < π(j)

Proof. Suppose not. In particular, this means that there exist i, j < n such that π(i) ≤
n, π(j) ≥ n + 1. If i < j, then π(i), π(j), 2n forms a 123 subsequence. If i > j, then
π(j), 2n, π(2n + 1− j), π(2n + 1− i) forms a 2431 subsequence. 2

Lemma 3.5 If π ∈ Src
2n(123, 2431) and π−1(1) ≤ n + 1, then π is one of the following four

permutations.

(i) n n− 1 . . . 2 1 2n 2n− 1 . . . n + 2 n + 1

(ii) 2n− 1 2n− 2 . . . n + 2 n + 1 1 2n n n− 1 . . . 3 2

(iii) n n− 1 . . . 2 2n 1 2n− 1 . . . n + 2 n + 1

(iv) 2n− 1 2n− 2 . . . n + 2 n + 1 2n 1 n n− 2 . . . 3 2

Proof. The above four all avoid 123 and 2431, and Lemma 3.4 shows that no other permu-
tations are possible. 2

For the proof of the next theorem, we will require the following identities by Egge ([3,
Thm. 2.10(iii)]).

|Src
2n(123, 132)| = Fn+1 (15)

|Src
2n+1(123, 132)| = Fn (16)

where F0 = F1 = 1, Fn+1 = Fn + Fn−1 for n ≥ 1.

Theorem 3.6 For all n ≥ 1,

|Src
2n(123, 2431)| = Fn+2 + 1. (17)

Proof. We condition on π−1(1) = k. If k = n or k = n + 1, then there are two possibilities
by Lemma 3.5. Otherwise we get

2n∑
k=n+2

|Src
2(k−n−1)(123, 132)| =

2n∑
k=n+2

Fk−n+1

=
n+1∑
k=3

Fk−1

= Fn+2 − 3,

so |Src
2n(123, 2431)| = 4 + Fn+2 − 3 = Fn+2 + 1. 2
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Theorem 3.7 For all n ≥ 0,

|Src
2n+1(123, 2431)| = Fn+1 − 1 (18)

Proof. We use an identical technique as in the proof of Theorem 3.6, except that σ in
Lemma 3.3 now has length 2(k − n − 1) + 1, and Lemmas 3.4 and 3.5 are irrelevant since
π−1(1) must be greater than n + 1 to avoid a 123 subsequence. This yields

|Src
2n+1(123, 2431)| =

2n+1∑
k=n+2

|Src
2(k−n−1)+1(123, 132)|

=
2n+1∑

k=n+2

Fk−n−2

=
n∑

k=1

Fk−1,

which is equal to Fn+1 − 1 by [1, Id. 1]. 2

For the rest of this section we enumerate various sets of rc-symmetric permutations which
avoid 132 and a pattern of length four. The proofs of the following lemmas and theorems
have a similar flavor to the earlier proofs in this section. First, we look at Src

n (132, 3421),
which is just like Src

n (123, 4312) in the sense that there are a constant number of permutations
in Src

2n(132, 3421) and a constant number of permutations in Src
2n+1(132, 3421) for sufficiently

large n.

Theorem 3.8 For all n ≥ 2,
|Src

2n(132, 3421)| = 4, (19)

and
|Src

2n+1(132, 3421)| = 3. (20)

In particular, the permutations in Src
n (132, 3421) are of the following form, where diagrams

(i)-(iii) are in Src
2n+1(132, 3421) and diagrams (i)-(iv) are in Src

2n(132, 3421):

�
�

�
�

�
�

(i)

�
�

�
�

�

s

s
(ii)

@
@

@
@

@
@

(iii)

�
�

�

�
�

�

(iv)
Figure 4: The possible forms of π ∈ Src

n (132, 3421)

Proof. Suppose π ∈ Src
2n(132, 3421). We show that π−1(1) (the location of the 1 in π) has

three possible values: 1, n + 1, and 2n. Suppose that 1 < π−1(1) < n + 1. Then there is
some entry j to the right of 2n, and 1 2n j is a 132-type subsequence. On the other hand, if
n + 1 < π−1(1) < 2n, then there is some entry j between 2n and 1 and some entry k before
2n. If k > j, then k 2n j 1 is a 3421 pattern. If k < j, then k 2n j is a 132 pattern. We
show each of these cases graphically.
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s

s
sc

1 < π−1(1) < n + 1
s

s
sc

s
c

n + 1 < π−1(1) < 2n
k > j

c

s
scs

c

n + 1 < π−1(1) < 2n
k < j

To finish the proof, we must only show that (i)-(iv) are in fact the only permutations
possible. First, suppose π−1(1) = 1. Then everything to the right of it must be ascending
to avoid 132, which forces (i). If π−1(1) = 2n, then the only requirement is that the inner
2n− 2 entries avoid 132 and 231, which forces solutions (ii) and (iii), by [3, Thm 2.10 (iv)].

Finally, if π−1(1) = n + 1, then, as before, everything must be ascending to the right of
the 1. Furthermore, everything right of the 1 must be smaller than everything left of the 1.
Otherwise, suppose there was a j to the left and a k to the right with j < k. Then j 2n k is
a 132 subsequence. This forces (iv) and (19) follows.

The proof of (20) is similar, except π ∈ Src
2n+1 implies π(n + 1) = n + 1, which makes (iv)

impossible. 2

Next, we look at Src
m (132, 1234).

Lemma 3.9 If π ∈ Src
m (R) and 132 ∈ R, then for all i, j, with i < π−1(1) < j, we have

π(i) > π(j).

Proof. Suppose not. Then m+1−π(j) m m+1−π(i) is a 132 subsequence. 2

Lemma 3.10 If π ∈ Src
m (R), 132 ∈ R, and π−1(1) < π−1(m), then π is 1 2 . . . m.

Proof. All entries following 1 in π must be in ascending order, or else we have a 132
subsequence. Since m follows 1, m must be the last entry of π, so π−1(1) = 1, and it follows
that π is 1 2 . . . m. 2

Lemma 3.11 If π ∈ Src
m (132, 1234), then π−1(1) ≥ m− 2.

Proof. Suppose not. Then there are at least three entries of π which follow 1. If any of
these are in descending order, say π−1(1) < i < j and π(i) > π(j), then 1π(i)π(j) is a 132
subsequence. If they are all ascending, say π−1(1) < i < j < k and π(i) < π(j) < π(k), then
1π(i)π(j)π(k) is a 1234 subsequence. 2

Lemma 3.12 If π ∈ Src
m (132, 1234), then π has one of the following three forms.

(i) π = 1	 σ 	 1, where σ ∈ Src
m−2(132, 1234).

(ii) π = 12	 σ 	 12, where σ ∈ Src
m−4(132, 1234).

(iii) π = 123	 σ 	 123, where σ ∈ Src
m−6(132, 1234).

Proof. The possible locations of the 1 are given by Lemma 3.11. The entries following it
are given by Lemma 3.9, and must be in increasing order to avoid a 132 subsequence. The
rest is determined by symmetry, and the fact that if σ contained a 132 or 1234 subsequence,
so would π. 2
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Theorem 3.13 For all n ≥ 0,

|Src
2n(132, 1234)| = |Src

2n+1(132, 1234)| = Tn, (21)

where Tn is the nth Tribonacci number given by the recurrence T0 = 1, T1 = 2, T2 = 3, Tn+1 =
Tn + Tn−1 + Tn−2 for n ≥ 2.

Proof. It is easy enough to confirm this theorem up to n = 2, since there are at most 8
permutations to be checked for any given n. The recurrence is given by Lemma 3.12, after
noting that any σ avoiding 132 and 1234 will suffice: since any such π is skew decomposable
(by definition), and 132 and 1234 are not skew decomposable, any 132 or 1234 subsequence
of π must be contained in a single summand. Since neither 123 nor σ contains such a pattern,
neither does π. 2

Now we examine Src
m (132, 2341). We introduce the following lemmas regarding the struc-

ture of permutations in this set.

Lemma 3.14 If π ∈ Src
m (132, 2341) and π−1(1) > π−1(m), then π−1(1) ≥ m− 1.

Proof. Suppose not. Then there are at least two entries of π which follow 1, say π−1(1) <
i < j. If π(i) > π(j), then 1π(i)π(j) is a 132 subsequence. If π(i) < π(j), then m + 1 −
π(j), m + 1− π(i), m, 1 is a 2341 subsequence. 2

Lemma 3.15 If π ∈ Src
m (132, 2341), then π has one of the following three forms:

(i) π = 1	 σ 	 1, where σ ∈ Src
m−2(132, 123).

(ii) π = 12	 σ 	 12, where σ ∈ Src
m−4(132, 123).

(iii) π = 123 . . . m.

Proof. The first two forms follow from Lemmas 3.14 and 3.9. σ must avoid 123, or else the
123 sequence adjoined with the 1 in π creates a 2341 subsequence in π. The last form is the
only possibility if π−1(1) < π−1(m), as follows from Lemma 3.10. 2

With these lemmas in hand, we are ready to enumerate Src
m (132, 2341).

Theorem 3.16 For all n ≥ 2,

|Src
2n(132, 1234)| = Fn+1 + 1. (22)

Proof. We claim that if a permutation π is of one of the forms given in Lemma 3.15,
then π ∈ Src

m (132, 2341). Clearly (iii) is. For (i) and (ii), note that since 132 is not skew
decomposable, any 132 subsequence must appear in a single summand of π. Likewise, since
2341 is only skew decomposable into 123 and 1, a 2341 subsequence can only appear in π if
123 appears in a summand of π. Combining (15) with Lemma 3.15, we find |Src

2n(132, 1234)| =
|Src

2n−2(132, 123)|+ |Src
2n−4(132, 123)|+ 1 = Fn + Fn−1 + 1 = Fn+1 + 1. 2

Theorem 3.17 For all n ≥ 1,

|Src
2n+1(132, 2341)| = Fn + 1. (23)
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Proof. By the same argument as in the proof of Theorem 3.16, any permutation of the forms
in Lemma 3.15 is valid. Using (16) from earlier in the paper, we find that |Src

2n+1(132, 2341)| =
|Src

2n−1(132, 123)|+ |Src
2n−3(132, 123)|+ 1 = Fn−1 + Fn−2 + 1 = Fn + 1. 2

Theorem 3.17 completes our analysis of pattern-avoiding permutations avoiding one pat-
tern of length three and one pattern of length four. We note that of the 3! · 4! = 144
possible pairs σ ∈ S3, τ ∈ S4, only the twelve pairs in the table below are of interest. For
instance, there is no need to enumerate Src

n (123, 2314) because 2314 contains the pattern
123, so |Src

n (123, 2314)| = |Src
n (123)|, which has been enumerated by Egge [3]. Similarly, we

have Wilf-equivalence classes such as |Src
n (123, 1432)| = |Src

n (321, 2341)| = |Src
n (321, 4123)|,

achieved by reversing the entries and taking the complements of entries, respectively. With
the exception of Src

2n(123, 1432), our results are complete.

σ τ |Src
2n(σ, τ)| |Src

2n+1(σ, τ)|
123 2413 F2n+1 F2n−1

123 2431 Fn+3 + 1 Fn+2 − 1
123 3412 2n+1 − (n + 1) 1
123 4231 n2 + 1

(
n
2

)
+ 1

123 4312 6 1
123 1432 ? A116716
132 1234 Tn Tn

132 2341 Fn+1 + 1 Fn + 1
132 3412 n + 1 n + 1
132 4231 n + 1 n + 1
132 4321 n + 1 n + 1
132 3421 4 3

A Appendix

Here we prove the Fibonacci identity we used in the proof of Theorem 2.8. We also give a
natural generalization of the identity. Neither this identity nor its generalization appears in
[1].
Theorem A.1 For all n ≥ 1,

F2n−2 +
n∑

k=1

F2k−42
n−k = F2n (24)

Proof. This is equivalent to showing
∑n

k=1 F2k−42
n−k = F2n−1. We prove this identity using

techniques of [1]. Accordingly, we recall that Fn is the number of ways to tile a 1× n board
using 1× 1 square tiles and 1× 2 domino tiles.

How many ways can we tile a board of length 2n− 1?
Answer 1: F2n−1

Answer 2: In the diagram below, consider the odd fault lines indicated by dotted lines. A
fault line is called unbreakable if a domino lies across it. Suppose the right-most unbreakable
odd fault line is at index 2k − 3. Then a domino lies across the fault and a square must lie
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directly to its right (these are shaded in the figure below) or else the next fault-line would
be unbreakable as well.

Now, there are 2(n− k) cells to the right that need to be filled, but each fault-line must
be breakable, so we can fill each pair of cells with either two squares or a domino. Thus,
there are 2n−k ways to fill the right side of the board. The 2k−4 cells to the left can be freely
tiled in F2k−4 ways. Note that when k = 1, there is no unbreakable fault line, which means
there are no cells to the left that are unaccounted for. Thus, we are tiling an empty board,
and we say in this case that F−2 = 1 (a somewhat curious claim, but a natural extension of
the Fibonacci numbers to negative indices). Summing over k, 1 ≤ k ≤ n, gives us (24).

2k−4 2
n−k

2k−3 2n−1

F

Figure 5: Conditioning on the rightmost unbroken odd fault line

2

Comment. A natural generalization of the above identity is

Fmn+r = FrF
n
m +

n∑
k=1

Fmk−m+r−1Fm−1F
n−k
m (25)

We leave the proof of (25), which is similar to the proof of (24), as an exercise for the reader.
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