
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Pascal’s Triangle
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Stirling Numbers of the
First Kind

Stirling Numbers of the 
Second Kind

= the number of ways to choose k elements 
from n elements, often read as “n choose k”

= the number of ways to break up n elements into k 
distinct partitions, often read as “n partition k”

= the number of ways to put n elements into k distinct 
cycles, often read “n cycle k”

Legendre-Stirling numbers of the 1st kind count the number of ways to 
choose the following:
1.  You have two permutations, P1 and P2.
2.  P1 is a permuation of {1,2,…,n}, while P2 is a permutation of 
{1,2,…,n,n+1}
3.  P1 contains k cycles.  P2 contains k+1 cycles.
4.  The largest element of each cycle in P1 must also be the largest 
element of a cycle in P2.
For example, the following is one such arrangement for n=4, k=2: 

Legendre-Stirling numbers of the 2nd kind count the number of ways to choose the 
following:
1.  You have two copies of each of the elements {1,2,…,n}
2.  These 2n elements are split up into k different blocks, 
plus one “zero-block”.
3.  Each non-zero block must contain both copies of its minimum element.
4.  Each non-zero block cannot contain more than one copy of any element other 
than its minimum element.
5.  The “zero-block” may not contain both copies of any of its elements.
6.  Only the zero-block may be empty.
For example, the following is one such arrangement for n=4, k=2 :

This equation is known to be true for the Stirling
numbers of the 1st kind.  A similar equation holds for the 
Stirling numbers of the 2nd kind.  So, how can we adapt 
them to fit the Legendre-Stirling numbers?

Triangle for

This new function also satisfies a recurrence

For comparison, here is the recurrence for the Legendre-
Stirling numbers of the 1st kind, which is remarkably similar.

Before going any further, it’s important to introduce 
some new notation. 

Using this notation, I can write out a generalized formula 
for two generic triangular recurrences.

Note that a, b can be functions of n, but not of k.  Also, c 
and d can be functions of k, not of n.  For example:

Hockey Stick Theorem
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Induction step of proof

There is also an analog of this theorem for the Stirling numbers:

If we rewrite the recurrences for Pascal’s triangle and the Stirling
numbers for n+k+1 instead of n, we see that the expression inside 
each summation is the right-hand side of the recurrence.

From this, we show that:

So the next step is to generalize the theorem to apply to all 
triangular recurrences of the form:

And we can, using induction.  The base case is n=1, m=1:

Induction Step:

n=0 1

n=1 1 1

n=2 3 4 1

….. 21 31 11 1

273 424 174 24 1

Convolutions of 
Triangular Recurrences

Legendre-Stirling Numbers of 
the First Kind
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4 8 1

8 52 20 1

16 320 292 40 1

Legendre-Stirling Numbers 
of the Second Kind

The above formula is known as the hockey-stick theorem.  The 
triangle below illustrates a proof of this theorem:

When generalized even further, we get:

Identities for Triangular Recurrences
Alex Fisher

Advisor:  Eric Egge

We define a function of n and m to equal the above sum.  
Then, we can draw up a new triangle for that function.

Acknowledgements: Thanks to Erin and Landon for giving me good 

ideas and distracting me from my failures.  Thanks to Deanna and Steve for candy 
and jokes, and thanks to Russ for letting us crash in the Skills Center.   Extra thanks 
to HHMI and the math department for funding this research.  Thanks to SMP for 
letting us sit in on your talks, and thanks to Eric for giving me direction and helping 
clear mental blocks.  And for copious amounts of Heath bars.

 

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


