Symmetric Permutations with No Long Decreasing Subsequences

Eric S. Egge

Carleton College

January 15, 2010

 π, σ are permutations.

 π avoids σ whenever π has no subsequence with same length and relative order as σ .

Example

6152347 avoids 231 but not 213.

 π, σ are permutations.

 π avoids σ whenever π has no subsequence with same length and relative order as σ .

Example

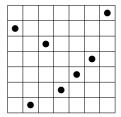
6152347 avoids 231 but not 213.

 π, σ are permutations.

 π avoids σ whenever π has no subsequence with same length and relative order as σ .

Example

6152347 avoids 231 but not 213.



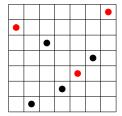
The diagram of 6152347.

 π, σ are permutations.

 π avoids σ whenever π has no subsequence with same length and relative order as σ .

Example

6152347 avoids 231 but not 213.



The diagram of 6152347.

General Question

How many permutations in S_n

- avoid a given set R of patterns and
- are invariant under 180° rotation?

Denote this set by $S_n^{rc}(R)$.

General Question

How many permutations in S_n

- avoid a given set R of patterns and
- are invariant under 180° rotation?

Denote this set by $S_n^{rc}(R)$.

Theorem (Lonoff, Ostroff, 2010)

 $|S_{2n}^{rc}(123,2413)| = F_{2n}.$

General Question

How many permutations in S_n

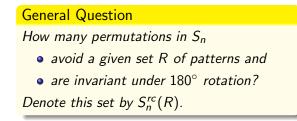
- avoid a given set R of patterns and
- are invariant under 180° rotation?

Denote this set by $S_n^{rc}(R)$.

Theorem (Lonoff, Ostroff, 2010)

 $|S_{2n}^{rc}(123,2413)| = F_{2n}.$

Theorem (E, 2007) $|S_{2n}^{rc}(321)| = \binom{2n}{n}.$

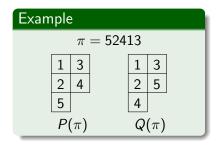


Theorem (Lonoff, Ostroff, 2010) $|S_{2n}^{rc}(123, 2413)| = F_{2n}.$ Theorem (E, 2007) $|S_{2n}^{rc}(321)| = \binom{2n}{n}.$

> Question What is $|S_{2n}^{rc}(4321)|$?

The RSK Correspondence

$$\pi \mapsto (P(\pi), Q(\pi))$$



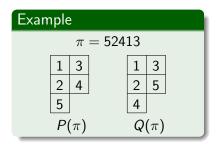
Eric S. Egge (Carleton College)

January 15, 2010 4 / 9

< 4 → <

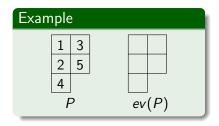
The RSK Correspondence

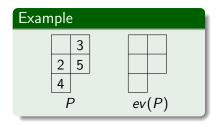
$$\pi \mapsto (P(\pi), Q(\pi))$$

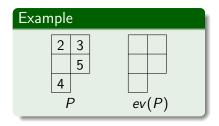


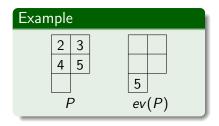
Theorem (Schensted)

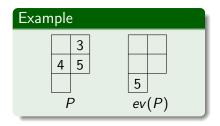
The length of the longest decreasing subsequence in π is the number of rows in $P(\pi)$.

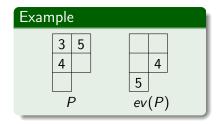


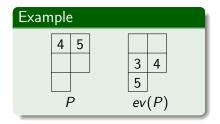


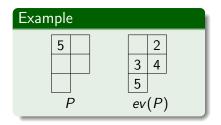


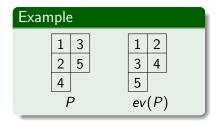


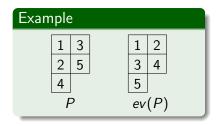








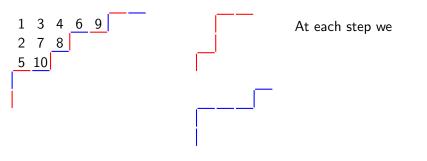




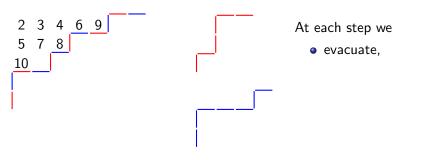
Theorem

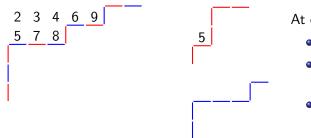
 π is invariant under 180° rotation if and only if $ev(P(\pi)) = P(\pi)$ and $ev(Q(\pi)) = Q(\pi)$.

Eric S. Egge (Carleton College)



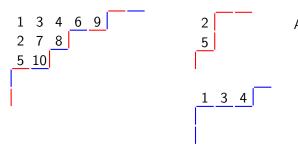
Eric S. Egge (Carleton College)





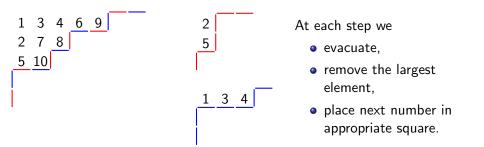
At each step we

- evacuate,
- remove the largest element,
- place next number in appropriate square.



At each step we

- evacuate,
- remove the largest element,
- place next number in appropriate square.



Fact

If P has 2n entries and at most 3 rows then

- the entries of P_r and P_b partition [n];
- P_r has at most 2 rows;
- P_b has at most 1 row.

Putting it all together

$$\pi \mapsto (P(\pi), Q(\pi)) \mapsto (P_r(\pi), P_b(\pi), Q_r(\pi), Q_b(\pi)) \mapsto E_1, E_2, \pi_r, \pi_b$$

• $\pi \in S^{rc}_{2n}(4321)$

< 4 → <

 $\pi \mapsto (\boldsymbol{P}(\pi), \boldsymbol{Q}(\pi)) \mapsto (\boldsymbol{P}_r(\pi), \boldsymbol{P}_b(\pi), \boldsymbol{Q}_r(\pi), \boldsymbol{Q}_b(\pi)) \mapsto \boldsymbol{E}_1, \boldsymbol{E}_2, \pi_r, \pi_b$

- $\pi \in S_{2n}^{rc}(4321)$
- $P(\pi)$, $Q(\pi)$ have 2n entries and at most 3 rows.

 $\pi \mapsto (\mathcal{P}(\pi), \mathcal{Q}(\pi)) \mapsto (\mathcal{P}_r(\pi), \mathcal{P}_b(\pi), \mathcal{Q}_r(\pi), \mathcal{Q}_b(\pi)) \mapsto \mathcal{E}_1, \mathcal{E}_2, \pi_r, \pi_b$

- $\pi \in S_{2n}^{rc}(4321)$
- $P(\pi)$, $Q(\pi)$ have 2n entries and at most 3 rows.
- P_r, P_b have entries [n] and Q_r, Q_b have entries [n].
- P_r, Q_r each has at most 2 rows and P_b, Q_b each has at most 1 row.

$$\pi \mapsto (P(\pi), Q(\pi)) \mapsto (P_r(\pi), P_b(\pi), Q_r(\pi), Q_b(\pi)) \mapsto E_1, E_2, \pi_r, \pi_b$$

- $\pi \in S_{2n}^{rc}(4321)$
- $P(\pi)$, $Q(\pi)$ have 2n entries and at most 3 rows.
- P_r, P_b have entries [n] and Q_r, Q_b have entries [n].
- P_r , Q_r each has at most 2 rows and P_b , Q_b each has at most 1 row.
- $E_1, E_2 \subseteq [n]$ and $|E_1| = |E_2|$.
- $\pi_r \in S_{|E_1|}(321)$ and $\pi_b \in S_{|E_1|}(21)$.

$$\pi\mapsto (P(\pi),Q(\pi))\mapsto (P_r(\pi),P_b(\pi),Q_r(\pi),Q_b(\pi))\mapsto E_1,E_2,\pi_r,\pi_b$$

- $\pi \in S^{rc}_{2n}(4321)$
- $P(\pi)$, $Q(\pi)$ have 2n entries and at most 3 rows.
- P_r, P_b have entries [n] and Q_r, Q_b have entries [n].
- P_r , Q_r each has at most 2 rows and P_b , Q_b each has at most 1 row.
- $E_1, E_2 \subseteq [n]$ and $|E_1| = |E_2|$.

•
$$\pi_r \in S_{|E_1|}(321)$$
 and $\pi_b \in S_{|E_1|}(21)$.

Theorem (E,2010)

$$|S_{2n+1}^{rc}(4321)| = |S_{2n}^{rc}(4321)| = \sum_{i=0}^{n} {\binom{n}{j}}^{2} C_{j}$$

Theorem (E,2010)

For all $k \ge 2$ and all $n \ge 0$ we have

$$|S_{2n}^{rc}(k\dots 21)| = \sum_{j=0}^{n} {\binom{n}{j}}^{2} \left| S_{j}\left(\left\lceil \frac{k+1}{2} \right\rceil \dots 21 \right) \right| \left| S_{n-j}\left(\left\lfloor \frac{k+1}{2} \right\rfloor \dots 21 \right) \right|.$$

Theorem (E,2010)

For all $k \ge 2$ and all $n \ge 0$ we have

$$|S_{2n}^{rc}(k\ldots 21)| = \sum_{j=0}^{n} {\binom{n}{j}}^{2} \left| S_{j}\left(\left\lceil \frac{k+1}{2} \right\rceil \ldots 21 \right) \right| \left| S_{n-j}\left(\left\lfloor \frac{k+1}{2} \right\rfloor \ldots 21 \right) \right|.$$

Corollary

$$|S_{2n}^{rc}(54321)| = \sum_{j=0}^{n} {\binom{n}{j}}^{2} C_{j} C_{n-j},$$

Thank You!

Image: A math and A