New Pattern-Avoiding Permutations Counted by the Schröder Numbers

Eric S. Egge

Carleton College

September 23, 2012

Theorem

If $\sigma \in S_3$ and $n \ge 0$ then $|S_n(\sigma)| = C_n.$

Theorem

If
$$\sigma \in S_3$$
 and $n \ge 0$ then

$$|S_n(\sigma)|=C_n.$$

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

is the number of Catalan paths of length n.

$$C_n = \sum_{j=1}^n C_{j-1} C_{n-j}$$

 r_n is the number of paths from (0,0) to (n,n)

- using North (0,1), East (1,0) and Diagonal (1,1) steps and
- never passing below y = x.

A Schröder Path

 r_n is the number of paths from (0,0) to (n,n)

- using North (0,1), East (1,0) and Diagonal (1,1) steps and
- never passing below y = x.

A Schröder Path

 r_n is the number of paths from (0,0) to (n,n)

- using North (0,1), East (1,0) and Diagonal (1,1) steps and
- never passing below y = x.

A Schröder Path

$$\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8}{r_n \mid 1 \mid 2 \mid 6 \mid 22 \mid 90 \mid 394 \mid 1806 \mid 8558 \mid 41586}$$
$$r_n = r_{n-1} + \sum_{j=1}^n r_{j-1}r_{n-j} \qquad r_n = \sum_{d=0}^n \binom{2n-d}{d} C_{n-d}$$

If $\pi \in S_n(1243, 2143)$ then at most one entry left of n is smaller than some entry to the right of n.

 $41523 \oplus 34251 = 83967$ 10 4251

4 / 1

$$|S_n(,)| = |S_{n-1}(,)| + \sum_{j=1}^n |S_{j-1}(,)||S_{n-j}(,)|$$

Stankova's Proof that $|S_n(2413, 3142)| = r_{n-1}$

Definition

For $\pi \in S_n(2413, 3142)$,

- $L_k > L_{k-1} > \cdots > L_1$ are the maximal sets of consecutive numbers left of n.
- $R_1 > R_2 > \cdots > R_l$ are the maximal sets of consecutive numbers right of n.

5/1

Stankova's Proof that $|S_n(2413, 3142)| = r_{n-1}$

Definition

For $\pi \in S_n(2413, 3142)$,

- $L_k > L_{k-1} > \cdots > L_1$ are the maximal sets of consecutive numbers left of n.
- $R_1 > R_2 > \cdots > R_l$ are the maximal sets of consecutive numbers right of n.

Observation

$$L_k > R_1 > L_{k-1} > R_2 > \cdots$$

or

$$R_1 > L_k > R_2 > L_{k-1} > \cdots$$

5/1

Stankova's Proof Continues

Lemma

- L_j is to the right of L_{j-1} for all j (3142).
- R_j is to the right of R_{j-1} for all j (2413).

Stankova's Proof Continues

Lemma

- L_j is to the right of L_{j-1} for all j (3142).
- R_j is to the right of R_{j-1} for all j (2413).

Stankova's Proof Continues

Lemma

- L_j is to the right of L_{j-1} for all j (3142).
- R_j is to the right of R_{j-1} for all j (2413).

Lemma

If R_i and L_i all avoid 2413 and 3142 then so does π .

Eric S. Egge (Carleton College) Permutations Counted by Schröder Numbers Septe

< 口 > < 同 >

If $X_n = |S_n(2413, 3142)|$ then

$$X_n = 2 \sum_{\alpha_1 + \dots + \alpha_m = n-1} X_{\alpha_1} \cdots X_{\alpha_m},$$

which can be rewritten

$$X_n = X_{n-1} + \sum_{j=1}^n X_{j-1} X_{n-j}.$$

Are there other sets *R* such that $|S_n(R)| = r_{n-1}$?

< 67 ▶

э

Are there other sets R such that $|S_n(R)| = r_{n-1}$?

Theorem (Gire, Kremer, West)

If $R \subseteq S_4$ then |R| = 2 and R is trivially equivalent to exactly one of

- 1234.1243
- 1324.2314
 - 1342,2341
- 3124,3214
 - 3142.3214

- 3412,3421
- 1324.2134
- 3124,2314
- 2134,3124
- 2413.3142

8 / 1

Avoiding Two Patterns of Length Four

D.	Kremer,	W.C.	Shiu / Discrete	Mathematics .	268	(2003)	171–183	17

Reference
Kremer [8]
West [8]
Open
Zeilberger ^a

Table 1 (continued)

"Via the package WILF (see http://www.math.temple.edu/~zeilberger).

< 🗗 🕨 🔸

Avoiding Two Patterns of Length Four

D. Kremer, W.C. Shiu/Discrete Mathematics 268 (2003) 171-183 175

Г	$ S_n(\Gamma) , n = 5, 6, 7, 8, 9, 10, 11$	Reference
3124,3214	90,394,1806 ,8558,41586,206098,1037718	Kremer [8]
3142,3214		
3412,3421		West [8]
1324,2134		
3124,2314		
2134,3124	ž.	
2143,2413	90,395,1823,8741,43193,218704,1129944	Open
1234,1324	90,396,1837,8864,44074,224352,1163724	Zeilberger ^a

Table 1 (continued)

"Via the package WILF (see http://www.math.temple.edu/~zeilberger).

Question

Does there exist $\sigma \in S_6$ such that $|S_n(2143, 2413, \sigma)| = r_{n-1}$?

The Conjecture

Conjecture

If σ is any of the permutations below, then $|S_n(2143, 2413, \sigma)| = r_{n-1}$.

• 415263	624315	516224
• 513642	465213	• 510524

The Conjecture

Eric S. Egge (Carleton College)

Conjecture

If σ is any of the permutations below, then $|S_n(2143, 2413, \sigma)| = r_{n-1}$.

• 415263	• 624315	516324
• 513642	• 465213	J10524

Lemma

If $\pi \in S_n(2143, 2413)$ then π has the form below.

Thank You!

イロト イ団ト イヨト イヨト

2