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A Problem in Analysis

f and g are functions from [0, 1] into [0, 1] which commute:

f (g(t)) = g(f (t)).

Conjecture (Dyer, 1954)

f and g must have a common fixed point.

Observation (Baxter, 1964)

f and g permute the fixed points of g ◦ f = f ◦ g .
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Complete Baxter Permutations

Definition

π is a complete Baxter permutation if for all i with 1 ≤ i ≤ |π|:
π(i) is even if and only if i is even

if π(x) = i , π(z) = i + 1, and y is between x and z , then π(y) < i if
i is odd and π(y) > i + 1 if i is even

Example
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Example

13 12 7 8 11 10 9 6
3 2 1 4 5



Baxter Permutations and anti-Baxter Permutations

Permutation in the odd entries:

Determines a unique complete Baxter permutation

Commonly called a (reduced) Baxter permutation

Is characterized by avoiding the generalized patterns 3− 14− 2 and
2− 41− 3

Permutation in the even entries:

May not determine a unique complete Baxter permutation

Has no common name, though sometimes called an anti-Baxter
permutation

Is characterized by avoiding the generalized patterns 3− 41− 2 and
2− 14− 3
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Compatibility

Definition

If there exists a complete Baxter permutation π such that π1 and π2 are
the permutations induced on the odd and even entries of π, respectively,
we say that π1 and π2 are compatible.
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Each Baxter permutation is compatible with a unique anti-Baxter
permutation.
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Compatibility

Definition

If there exists a complete Baxter permutation π such that π1 and π2 are
the permutations induced on the odd and even entries of π, respectively,
we say that π1 and π2 are compatible.

Examples

Each Baxter permutation is compatible with a unique anti-Baxter
permutation.

1 2 7 6 5 4 3 8 9

Anti-Baxter permutations may be compatible with multiple Baxter
permutations.

1 2 7 6 5 4 3 8 9
1 2 5 6 7 4 3 8 9
1 2 7 6 3 4 5 8 9



Products of Fibonacci Numbers

Theorem

The number of Baxter permutations compatible with a given anti-Baxter
permutation is a product of Fibonacci numbers.
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DABPs

Doubly Alternating Baxter Permutations

ascents and descents alternate in π, beginning with an ascent

ascents and descents alternate in π−1, beginning with an ascent

Baxter

Theorem (Guibert & Linusson, 2000)

The number of DABPs of length 2n is Cn, the nth Catalan number.
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Snow Leopard Permutations

Definition

We call the permutations of length n which are compatible with the
DABPs of length n + 1 the snow leopard permutations (SLPs).

Examples

1
123, 321

12345, 14325, 34521, 54123, 54321

Properties

anti-Baxter

identity and reverse identity are always snow leopard

odd entries in odd positions, even entries in even positions



Decomposition of SLPs

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation π of length 2n is an SLP if and only if there exists an SLP
σ of length 2n − 1 such that π = 1⊕ σc .

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation π is an SLP if and only if there exist SLPs π1 and π2 such
that π = (1⊕ πc1 ⊕ 1)	 1	 π2.
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Decomposition of SLPs

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation π of length 2n is an SLP if and only if there exists an SLP
σ of length 2n − 1 such that π = 1⊕ σc .

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation π is an SLP if and only if there exist SLPs π1 and π2 such
that π = (1⊕ πc1 ⊕ 1)	 1	 π2.

123c

21

587694321

(1⊕ 123c ⊕ 1)	 1	 321



Decomposition of SLPs

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation π is an SLP if an only if there exist SLPs π1 and π2 such
that π = (1⊕ πc1 ⊕ 1)	 1	 π2.

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

SLn:= the set of snow leopard permutations of length 2n − 1

|SL1| = 1, |SL2| = 2

|SLn+1| =
n∑

j=0

|SLj ||SLn−j |

|SLn| = Cn



Bijection with Catalan paths
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Odd and Even Knots

Definition

We call the permutation induced on the even entries of an SLP π an even
knot (even(π)) and the permutation induced on the odd entries an odd
knot (odd(π)).

Examples

Odd knots: ∅, 1, 12, 21, 123, 231, 312, 321
Even knots: ∅, 1, 12, 21, 123, 132, 213, 231, 312, 321
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Decomposition of Even and Odd Knots

α1
c

β2

Odd knot β decomposition

β1
c

α1

Even knot α decomposition



What are the odd and even knots counted by?

n 0 1 2 3 4 5 6

|EKn| 1 1 2 6 17 46 128

|OKn| 1 1 2 4 9 23 63

Theorem (Egge, Rubin)

The odd knots of length n are in bijection with the set of Catalan paths of
length n which do not contain NEEN.

Theorem (Egge, Rubin)

The even knots of length n are in bijection with the set of Catalan paths
of length n + 1 which have no ascent of length exactly 2. (Essentially no
ENNE.)
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Entangled Knots

Definition

We say an even knot α and an odd knot β are entangled whenever there
exists an SLP π such that even(π) = α and odd(π) = β.

Theorem (Egge, Rubin)

The even knots of length n − 1 entangled with the identity permutation of
length n are the 3412-avoiding involutions of length n − 1.

Theorem (Egge, Rubin)

The odd knots of length n + 1 entangled with the reverse identity
permutation of length n are the complements of the 3412-avoiding
involutions of length n + 1.
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Motzkin Numbers

Mn is the number of lattice paths from (0, 0) to (n, 0) using only up (1, 1),
level (1, 0), and down (1,−1) steps.

��
��@@

@@ ��
��

�� @@�� @@
@@

@@r r r r r r r r r r r r r r r r r r

n 0 1 2 3 4 5 6 7 8 9

Mn 1 1 2 4 9 21 51 127 323 835



Motzkin Numbers

Mn is the number of lattice paths from (0, 0) to (n, 0) using only up (1, 1),
level (1, 0), and down (1,−1) steps.

��
��@@

@@ ��
��

�� @@�� @@
@@

@@r r r r r r r r r r r r r r r r r r

n 0 1 2 3 4 5 6 7 8 9

Mn 1 1 2 4 9 21 51 127 323 835



Motzkin Numbers

Mn is the number of lattice paths from (0, 0) to (n, 0) using only up (1, 1),
level (1, 0), and down (1,−1) steps.

��
��@@

@@ ��
��

�� @@�� @@
@@

@@r r r r r r r r r r r r r r r r r r

n 0 1 2 3 4 5 6 7 8 9

Mn 1 1 2 4 9 21 51 127 323 835



Entangled Knots

Corollary (Egge, Rubin)

The number of even knots of length n − 1 entangled with the identity
permutation of length n is Mn−1, where Mn is the nth Motzkin number.

Corollary (Egge, Rubin)

The number of odd knots of length n + 1 entangled with the reverse
identity permutation of length n is Mn+1.

Conjecture

For each even (resp. odd) knot, the number of entangled odd (resp. even)
knots is a product of Motzkin numbers.
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Janus Knots

Odd Knots
1

12
21

123
231
312
321

1234
1324
2341
3412
3421
4123
4231
4312
4321

12345
12435
13245

Definition

A janus knot is a permutation which is both an even
knot and an odd knot.

n 1 2 3 4 5 6 7 8 9

|Jn| 1 2 4 8 17 37 82 185 423

Even Knots
1
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21
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132
213
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1234
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1432
2134
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2341
2431
3214
3241
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Janus Knots and Motzkin Paths



Janus Knots and Motzkin Paths

Theorem (Egge, Rubin)

There is a natural bijection between the set of janus knots of length n and
the set of peakless Motzkin paths of length n + 1.
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