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f and g are functions from [0, 1] into [0, 1] which commute:

fg(t)) = g(f(1)).

Conjecture (Dyer, 1954)

f and g must have a common fixed point.

Observation (Baxter, 1964)
f and g permute the fixed points of go f =fog.
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Baxter Permutations and anti-Baxter Permutations

Permutation in the odd entries:
@ Determines a unique complete Baxter permutation
e Commonly called a (reduced) Baxter permutation
@ |s characterized by avoiding the generalized patterns 3 — 14 — 2 and
2—-41-3



Baxter Permutations and anti-Baxter Permutations

Permutation in the odd entries:
@ Determines a unique complete Baxter permutation
e Commonly called a (reduced) Baxter permutation
@ |s characterized by avoiding the generalized patterns 3 — 14 — 2 and
2—-41-3

Permutation in the even entries:
@ May not determine a unique complete Baxter permutation
@ Has no common name, though sometimes called an anti-Baxter
permutation
@ Is characterized by avoiding the generalized patterns 3 — 41 — 2 and
2—14-3
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Definition

If there exists a complete Baxter permutation 7 such that m; and 7 are
the permutations induced on the odd and even entries of 7, respectively,
we say that m; and 7 are compatible.
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Examples

Each Baxter permutation is compatible with a unique anti-Baxter
permutation.

127654389

Anti-Baxter permutations may be compatible with multiple Baxter
permutations.
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Compatibility

Definition

If there exists a complete Baxter permutation 7 such that 73 and 75 are
the permutations induced on the odd and even entries of 7, respectively,
we say that m; and 7 are compatible.
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Examples

Each Baxter permutation is compatible with a unique anti-Baxter
permutation.

127654389

Anti-Baxter permutations may be compatible with multiple Baxter
permutations.
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Compatibility

Definition

If there exists a complete Baxter permutation 7 such that 73 and 75 are
the permutations induced on the odd and even entries of 7, respectively,
we say that m; and 7 are compatible.

| \

Examples

Each Baxter permutation is compatible with a unique anti-Baxter
permutation.

127654389

Anti-Baxter permutations may be compatible with multiple Baxter
permutations.

127654389
125674389
127634589




Products of Fibonacci Numbers

The number of Baxter permutations compatible with a given anti-Baxter
permutation is a product of Fibonacci numbers.
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Doubly Alternating Baxter Permutations

@ ascents and descents alternate in 7, beginning with an ascent
@ ascents and descents alternate in 7!, beginning with an ascent

o Baxter
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@ ascents and descents alternate in 7, beginning with an ascent
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o Baxter

Theorem (Guibert & Linusson, 2000)

The number of DABPs of length 2n is C,, the n'" Catalan number.




Snow Leopard Permutations

Definition

We call the permutations of length n which are compatible with the
DABPs of length n+ 1 the snow leopard permutations (SLPs).

1
123, 321
12345, 14325, 34521, 54123, 54321

Properties

@ anti-Baxter
@ identity and reverse identity are always snow leopard

@ odd entries in odd positions, even entries in even positions
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Decomposition of SLPs

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation 7 of length 2n is an SLP if and only if there exists an SLP
o of length 2n — 1 such that 7 = 1 & o€.

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation 7 is an SLP if and only if there exist SLPs 71 and 72 such
thatr= (1@ dl)olom.

123°

587694321

(1e123c@p1)o16321




Decomposition of SLPs

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)

A permutation 7 is an SLP if an only if there exist SLPs 71 and 75 such
thatr=(1@n{@l)elem.

Theorem (Caffrey, Egge, Michel, Rubin, Ver Steegh)
SL,:= the set of snow leopard permutations of length 2n — 1
(] ’SL1| = 1, |5L2‘ =2

o |SLopa| =Y |SLil|SLy—j|

j=0
o |SL,| =G,
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Odd and Even Knots

Definition

We call the permutation induced on the even entries of an SLP 7 an even
knot (even(w)) and the permutation induced on the odd entries an odd
knot (odd(7)).




Odd and Even Knots

Definition

We call the permutation induced on the even entries of an SLP 7 an even
knot (even(w)) and the permutation induced on the odd entries an odd
knot (odd(7)).

Odd knots: 0, 1, 12, 21, 123, 231, 312, 321
Even knots: 0, 1, 12, 21, 123, 132, 213, 231, 312, 321




Decomposition of Even and Odd Knots

B2

Odd knot 8 decomposition

Even knot o decomposition
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[EK,] |1[1[2[6 17| 46 | 128
OK,J (11249 [23] 63




What are the odd and even knots counted by?

[EK,] |1[1[2[6 17| 46 | 128
OK,J (11249 [23] 63

Theorem (Egge, Rubin)

The odd knots of length n are in bijection with the set of Catalan paths of
length n which do not contain NEEN.




What are the odd and even knots counted by?

[EK,] |1[1[2[6 17| 46 | 128

OK,[ [1 1249 23] 63

Theorem (Egge, Rubin)
The odd knots of length n are in bijection with the set of Catalan paths of
length n which do not contain NEEN.

Theorem (Egge, Rubin)

The even knots of length n are in bijection with the set of Catalan paths
of length n+ 1 which have no ascent of length exactly 2. (Essentially no
ENNE.)




Entangled Knots

Definition

We say an even knot o and an odd knot (8 are entangled whenever there
exists an SLP 7 such that even(7) = « and odd(7) = S.
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Theorem (Egge, Rubin)

The even knots of length n — 1 entangled with the identity permutation of
length n are the 3412-avoiding involutions of length n — 1.
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Entangled Knots

Theorem (Egge, Rubin)

The even knots of length n — 1 entangled with the identity permutation of
length n are the 3412-avoiding involutions of length n — 1.

v

Theorem (Egge, Rubin)

The odd knots of length n+ 1 entangled with the reverse identity
permutation of length n are the complements of the 3412-avoiding
involutions of length n+ 1.
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Entangled Knots

Corollary (Egge, Rubin)

The number of even knots of length n — 1 entangled with the identity
permutation of length n is M,,_1, where M,, is the nth Motzkin number.

v

Corollary (Egge, Rubin)

The number of odd knots of length n + 1 entangled with the reverse
identity permutation of length n is M,41.

v




Entangled Knots

Corollary (Egge, Rubin)

The number of even knots of length n — 1 entangled with the identity
permutation of length n is M,,_1, where M,, is the nth Motzkin number.

v

Corollary (Egge, Rubin)

The number of odd knots of length n + 1 entangled with the reverse
identity permutation of length n is M,41.

Conjecture

| A\

For each even (resp. odd) knot, the number of entangled odd (resp. even)
knots is a product of Motzkin numbers.




Odd Knots Even Knots
1 1
12 12
21 21
123 123
231 132
312 213
321 231

1234 312
1324 321
2341 1234
3412 1243
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4231 2134
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4321 2341
12345 2431
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Odd Knots Even Knots
1 1
12 12
21 Definition 21
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Odd Knots Even Knots
1 1
12 12
21 Definition 21
123 A janus knot is a permutation which is both an even 123
231 132
391 knot and an odd knot. 913
321 231

1234 312
1324 321
2341 n [1]2|3]4]5]|6|7]8]09 1234
3412 lJl | 1]2]4]8]17|37|82] 185 423 1243
3421 1324
4123 1432
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Janus Knots and Motzkin Paths

A004148 Generalized Catalan numbers: a(n+1) = a(n)+ Sum(k=1..n-1, a(k)*a(n-1-k) ). =
(Formerly M1141)
i, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502,
424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047,
1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374 (list; graph; refs; listen:
history; text; internal format
OFFSET 0,4

COMMENTS Arises in enumerating secondary structures of RNA molecules. The 17
structures with 6 nucleotides are shown in the illustration (after
Waterman, 1978).

Hankel transform is period 8 sequence [1,1,1,0,-1,-1,-1,0,...].

Enumerates peak-less Motzkin paths of length n. Example: a(5)=8 because we
have HHHHE, HHUED, HUHDH, HUHED, UEDHH, UHHDH, UHEED, UUHDD, where
U=(1,1), D=(1,-1) and H=(1,0). - Emeric Deutsch, Nov 19 2003

Number of Dyck paths of semilength n-1 with no UUU's and no DDD's, where
U=(1,1) and D=(1,-1) (n>0) - Emeric Deutsch, Nov 19 2003

For n>=1, a(n) = number of dissections of an (n+2)-gon with strictly
disjoint diagonals and no diagonal incident with the base. (One side of
the (n+2)-gon is designated the base.) - David Callan, Mar 23 2004

For n>=2, a(n-2)= number of UU-free Motzkin n-paths = number of DU-free
Motzkin n-paths. - David Callan, Jul 15 2004

a(n)=number of UU-free Motzkin n-paths containing no low peaks (A low peak
is a UD pair at ground level, i.e. whose removal would create a pair of
Motzkin paths). For n>=1, a(n)=number of UU-free Motzkin (n-1)-paths =
number of DU-free Motzkin (n-1)-paths. a(n) is asymptotically ~ ¢ n*(-3/2)
(1 + phi)®n with ¢ = 1.1043... and phi=(l+sqrt(5))/2. - David Callan, Jul
15 2004. In closed form, ¢ = sqrt(30+1d*sqrt(5))/(4*sqrt(Pi)) =
1.104365547309692849... - Vaclav Kotesovec, Sep 11 2013

a(n) = number of Dyck (n+l)-paths with all pyramid sizes >= 2. A pyramid is
a maximal subpath of the form k upsteps immediately followed by k
downsteps and its size is k. - David Callan, Oct 24 2004

a(n)=number of Dyck paths of semilength n+l with no small pyramids (n>=1). A
pyramid is a maximal sequence of the form k Us followed by k Ds with k>=1.
A small pyramid is one with k=1. For example, a[4]=4 counts the following
Dyck 5-paths (pyramids denoted by lowercase letters and separated by a
vertical bar): uuuuuddddd, Uuudd|uuddD, uudd|uuuddd, uuuddd|uudd. - David
Callan, Oct 25 2004

From Emeric Deutsch, Jan 08 2006: (Start)

"o inY=number of Motzkin naths of lenath n-1 with no neaks at level >=1_




Janus Knots and Motzkin Paths

Theorem (Egge, Rubin)

There is a natural bijection between the set of janus knots of length n and
the set of peakless Motzkin paths of length n+ 1.
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