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Caffrey, Egge, Michel, Rubin and Ver Steegh recently introduced snow leopard permutations, which are the anti-
Baxter permutations that are compatible with the doubly alternating Baxter permutations. Among other things, they
showed that these permutations preserve parity, and that the number of snow leopard permutations of length 2n − 1

is the Catalan number Cn. In this paper we investigate the permutations that the snow leopard permutations induce
on their even and odd entries; we call these the even threads and the odd threads, respectively. We give recursive
bijections between these permutations and certain families of Catalan paths. We characterize the odd (resp. even)
threads which form the other half of a snow leopard permutation whose even (resp. odd) thread is layered in terms of
pattern avoidance, and we give a constructive bijection between the set of permutations of length n which are both
even threads and odd threads and the set of peakless Motzkin paths of length n+ 1.

Keywords: Baxter permutation, Catalan path, Motzkin path, snow leopard permutation

1 Introduction
A complete Baxter permutation π, as introduced by Baxter (1964) and characterized by Chung et al.
(1978), is a permutation of length 2n+ 1 such that, for all i with 1 ≤ i ≤ 2n+ 1,

• π(i) is even if and only if i is even and

• if π(x) = i, π(y) = i + 1, and z is between x and y (that is, x < z < y or y < z < x), then
π(z) < i if i is odd and π(z) > i+ 1 if i is even.

As Chung and her coauthors note, each complete Baxter permutation is uniquely determined by its odd en-
tries. Accordingly, for each complete Baxter permutation π of length 2n+1, the associated reduced Baxter
permutation of length n + 1 is the permutation π induces on its odd entries. For example, 981254367
is a complete Baxter permutation of length nine, whose associated reduced Baxter permutation is 51324.
One can show that a permutation is a reduced Baxter permutation if and only if it avoids the vincular
patterns 3142 and 2413. That is, if π has length n, then π is a reduced Baxter permutation whenever
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there are no indices 1 ≤ i < j < j + 1 < k < n such that π(j) < π(k) < π(i) < π(j + 1) (for
3142) or π(j + 1) < π(i) < π(k) < π(j) (for 2413). For example, the complete Baxter permutation
3 2 1 4 13 12 7 8 11 10 9 6 5 has reduced Baxter permutation 2174653, which has no instances of 3142
or 2413. In contrast, 4613752 is not a reduced Baxter permutation because the subsequence 6375 is an
instance of 3142. We sometimes refer to reduced Baxter permutations as Baxter permutations for short.

For each complete Baxter permutation π of length 2n + 1, the associated anti-Baxter permutation is
the permutation of length n that π induces on its even entries. Although complete Baxter permutations
are determined by their associated Baxter permutations, they are not determined by their associated anti-
Baxter permutations: many anti-Baxter permutations appear in several complete Baxter permutations. For
example, 4123 is the anti-Baxter permutation associated with both of the complete Baxter permutations
981254367 and 983214765. On the other hand, anti-Baxter permutations are characterized by pattern
avoidance conditions nearly identical to those which characterize the Baxter permutations: a permutation
π is anti-Baxter if and only if it avoids the vincular patterns 3412 and 2143. That is, if π has length n, then
π is anti-Baxter whenever there are no indices 1 ≤ i < j < j + 1 < k < n such that π(j + 1) < π(k) <
π(i) < π(j) (for 3412) or π(j) < π(i) < π(k) < π(j + 1) (for 2143). We say a Baxter permutation
π1 and an anti-Baxter permutation π2 are compatible whenever there is a complete Baxter permutation π
such that π1 and π2 are the permutations induced on the odd and even entries of π, respectively. One can
show that this definition of compatibility is equivalent to the definition of compatibility given by Caffrey
et al. (2015).

Baxter first introduced the permutations that now bear his name in connection with a problem involving
fixed points of commuting continuous functions on the closed interval [0, 1], but they have also appeared
in a variety of other settings. One such setting involves the Aztec diamond of order n, which is an array
of unit squares with 2i squares in row i for 1 ≤ i ≤ n and 2(2n− i+1) squares in row i for n < i ≤ 2n,
in which the squares are centered in each row. In Figure 1 we have the Aztec diamond of order three. The

Fig. 1: The Aztec diamond of order 3.

entries of our complete Baxter permutations will be at the vertices of an Aztec diamond. We prefer to
arrange these vertices in rows and columns, so we will orient all of our Aztec diamonds as in Figure 2.

Aztec diamonds can be tiled by dominos, and Elkies et al. (1992) have described how to construct,
for each such tiling of the Aztec diamond of order n, a pair of matrices SASM(T ) and LASM(T )
of sizes n × n and (n + 1) × (n + 1), respectively. Each of these matrices is an alternating-sign matrix
(ASM), which is a matrix with entries in {0, 1,−1}whose nonzero entries in each row and in each column
alternate in sign and sum to one. (Note that SASM and LASM above are short for small ASM and large
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Fig. 2: The Aztec diamond of order 3, reoriented.

ASM, respectively. For an introduction to ASMs and a variety of related combinatorial objects, see the
work of Robbins (1991), Bressoud (1999), and Propp (2001).) To carry out this construction, first note
that a tiling of an Aztec diamond with dominos gives rise to a graph whose vertices are lattice points, as
in Figure 3. Each exterior vertex of this graph has the same degree in all domino tilings, so we disregard

Fig. 3: The graph of a domino tiling of the Aztec diamond of order 3.

these vertices. The remaining vertices fall naturally into two sets as in Figure 4: the black vertices form an
(n+1)× (n+1) matrix while the white vertices form an n× n matrix. We construct LASM(T ) on the
black vertices by labeling each vertex of degree four with a 1, labeling each vertex of degree three with a
0, and labeling each vertex of degree two with a −1. We construct SASM(T ) on the white vertices by
labeling each vertex of degree four with a −1, labeling each vertex of degree three with a 0, and labeling
each vertex of degree two with a 1. For example, the tiling T in Figure 4 has

LASM(T ) =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


and

SASM(T ) =

0 0 1
1 0 0
0 1 0

 .
Canary (2010) has shown that LASM(T ) is a permutation matrix if and only if it is the matrix for a
Baxter permutation. In this case, if we now introduce gray dots inside the dominos as in Figure 5, and
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Fig. 4: The graph of a domino tiling of the Aztec diamond of order 3 with outer vertices removed.

Fig. 5: The entries of the associated complete Baxter permutation are at the black, white, and gray dots.

assign 0s to each of them, then the black, white, and gray dots together form the matrix for a complete
Baxter permutation.

While Baxter permutations have been studied in several other combinatorial incarnations (see, for ex-
ample, the papers of Asinowski et al. (2013) and Dilks (2014)), we focus on a certain subset of the Baxter
permutations, and their compatible anti-Baxter permutations. Specifically, an alternating permutation, or
an up-down permutation, is a permutation which begins with an ascent, and in which ascents and descents
alternate. Similarly, a doubly alternating permutation is an alternating permutation whose inverse is also
alternating. Guibert and Linusson (2000) have shown that the number of doubly alternating Baxter permu-
tations of length 2n is the Catalan number Cn = 1

n+1

(
2n
n

)
, as is the number of doubly alternating Baxter

permutations of length 2n+ 1. Building on this, Caffrey et al. (2015) make the following definition.

Definition 1.1. A snow leopard permutation is an anti-Baxter permutation which is compatible with a
doubly alternating Baxter permutation.

Caffrey et al. (2015) show that compatibility is a bijection between the set of doubly alternating Baxter
permutations of length n and the set of snow leopard permutations of length n − 1. They also give a
simple bijection between the set of snow leopard permutations of length 2n and the set of snow leopard
permutations of length 2n − 1 (see Theorem 3.1), so we focus our attention on the snow leopard permu-
tations of odd length. We write SLn to denote the set of snow leopard permutations of length 2n− 1; in
Table 1 we list the snow leopard permutations of lengths one, three, and five.

Like the complete Baxter permutations, and as Caffrey et al. (2015) show, the snow leopard permuta-
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n SLn

1 1
3 123,321
5 12345,14325,34521,54123,54321

Tab. 1: The snow leopard permutations of lengths one, three, and five.

tions preserve parity. In this paper, we study the permutations the snow leopard permutations induce on
their odd and even entries; we call these induced permutations odd threads and even threads, respectively.
In Section 2 we recall some useful permutation tools. In Section 3 we give recursive decompositions of
the even and odd threads, and we explore the extent to which these decompositions are unique. In Section
4 we use our decompositions to give recursive bijections between the set of even threads of length n and
the set of Catalan paths of length n + 1 with no ascent of length two, and between the set of odd threads
of length n and the set of Catalan paths of length n with no four consecutive steps NEEN . In Section
5 we begin to describe which even and odd threads are induced by the same snow leopard permutation.
In particular, we show that the even threads which can be paired with the increasing odd thread to form a
snow leopard permutation are exactly the 3412-avoiding involutions, we show that the odd threads which
can be paired with the decreasing even thread to form a snow leopard permutation are exactly the com-
plements of the 3412-avoiding involutions, and we extend these results in a natural way to layered even
and odd threads. Finally, in Section 6 we give a constructive bijection between the set of permutations
of length n which are both even threads and odd threads and the set of peakless Motzkin paths of length
n+ 1.

2 Permutation Tools
Throughout we write Sn denote the set of all permutations of length n, written in one-line notation, and
for any permutation π we write |π| to denote the length of π. The complement operation on permutations
will be useful for us, so we recall it next.

Definition 2.1. Following Kitaev (2011), for any permutation π ∈ Sn, we write c(π) to denote the
complement of π, which is the permutation in Sn with

c(π)(j) = n+ 1− π(j)

for all j, 1 ≤ j ≤ n.

We will also make extensive use of the following two ways of combining two permutations.

Definition 2.2. For permutations π ∈ Sn and σ ∈ Sm we write π⊕σ to denote the permutation in Sn+m

with

(π ⊕ σ)(j) =

{
π(j) if 1 ≤ j ≤ n
n+ σ(j − n) if n+ 1 ≤ j ≤ n+m

for all j, 1 ≤ j ≤ n, and we write π 	 σ to denote the permutation in Sn+m with

(π 	 σ)(j) =

{
m+ π(j) if 1 ≤ j ≤ n
σ(j − n) if n+ 1 ≤ j ≤ n+m
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for all j, 1 ≤ j ≤ n.

Example 2.3. If π = 14235 and σ = 312 then c(π) = 52431, π⊕σ = 14235867, and π	σ = 47568312.

At times we will be working with permutations of length 0 or −1. For these, we use the following
convention.

Definition 2.4. We write ∅ to denote the empty permutation, which is the unique permutation of length
0, and we write @ to denote the antipermutation, which is the unique permutation of length −1. We have
c(@) = @ and 1⊕@ = @⊕ 1 = 1	@ = @	 1 = ∅.

Note that 1 is a complete Baxter permutation, whose corresponding (reduced) Baxter permutation is
also 1. Since 1 is also doubly alternating, ∅ (its compatible anti-Baxter permutation) is a snow leopard
permutation. Similarly, ∅ is a complete Baxter permutation, whose corresponding Baxter permutation is
also ∅. Since ∅ is also doubly alternating and has length 0, its compatible anti-Baxter permutation is @.
In particular, @ is a snow leopard permutation.

3 Even Threads, Odd Threads, and their Decompositions
Our starting point, and one of the main results of Caffrey et al. (2015), is the following recursive decom-
position of the snow leopard permutations of odd positive length.

Theorem 3.1. (Caffrey et al., 2015, Thm. 2.20 and Prop. 2.22) For any permutation π of odd positive
length, π is a snow leopard permutation if and only if there exist snow leopard permutations π1 and π2 of
odd length such that π = (1 ⊕ c(π1) ⊕ 1) 	 1 	 π2. For any permutation σ of even length, σ is a snow
leopard permutation if and only if σ = 1 ⊕ c(σ1) for some snow leopard permutation σ1. In addition,
these decompositions are uniquely determined by π and σ, respectively.

We use the term connector to refer to the entry in π corresponding to the final 1 in the decomposition
of π. From the recursive decomposition of π in Theorem 3.1, we see that the connector of π will always
equal π(1)− 1 if π(1) > 1. When π(1) = 1, the permutation will not have a connector. Note that when a
snow leopard permutation π does have a connector, the corresponding entry in c(π) will be a left-to-right
maximum and a fixed point in c(π).

Example 3.2. Let π = 587694321 = (1 ⊕ c(123) ⊕ 1) 	 1 	 321. Since both 123 and 321 are snow
leopard permutations, π must also be a snow leopard permutation, with connector π(6) = 4. Here,
c(π) = 523416789 so c(π)(6) = 6 is both a left-to-right maximum and a fixed point in c(π).

Note that for snow leopard permutations of lengths one and three we have

1 = 1⊕ c(@)⊕ 1,

123 = 1⊕ c(1)⊕ 1,

and
1 = (1⊕ c(@)⊕ 1)	 1	 (1⊕ c(@)⊕ 1),

so by using Theorem 3.1 inductively we get the following natural “block decomposition” for snow leopard
permutations of odd positive length.
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Corollary 3.3. For any permutation π of odd positive length, π is a snow leopard permutation if and only
if there is a sequence π1, . . . , πk of snow leopard permutations of odd length such that

π = (1⊕ c(π1)⊕ 1)	 1	 (1⊕ c(π2)⊕ 1)	 1	 · · · 	 1	 (1⊕ c(πk)⊕ 1).

In addition, the sequence π1, . . . , πk is uniquely determined by π.

Theorem 3.1 tells us that the set of snow leopard permutations of odd length is closed under a compli-
cated operation, but we might hope it is also closed under some simpler operation. Unfortunately, this set
is not closed under ⊕ or 	: neither 321 	 123 = 654123 nor 321 ⊕ 123 = 321456 are snow leopard
permutations, even though 321 and 123 are. However, we do have the following result.

Theorem 3.4. Suppose π and σ are snow leopard permutations of odd length. Then π 	 1	 σ is also a
snow leopard permutation.

Proof: Suppose π and σ are snow leopard permutations of odd length with |π| = 2n − 1. We argue by
induction on n.

When n = 0 we have π = @ and π 	 1	 σ = @	 1	 σ = σ, which is a snow leopard permutation.
When n = 1 we have π = 1 and

π 	 1	 σ = 1	 1	 σ
= (1⊕@⊕ 1)	 1	 σ,

which is a snow leopard permutation by Theorem 3.1.
Now suppose π 	 1 	 σ is a snow leopard permutation whenever |π| < 2k − 1 and let |π| = 2k − 1.

Since π is a snow leopard permutation of odd positive length, by Theorem 3.1 there are snow leopard
permutations π1 and π2 with

π 	 1	 σ = ((1⊕ c(π1)⊕ 1)	 1	 π2)	 1	 σ
= (1⊕ c(π1)⊕ 1)	 1	 (π2 	 1	 σ).

Since |π| = 2k− 1 and |(1⊕ c(π1)⊕ 1)	 1| ≥ 2, we must have |π2| < 2k− 1. Now, since π2 and σ are
snow leopard permutations with |π2| < 2k − 1, π2 	 1 	 σ is a snow leopard permutation by induction.
Thus, π 	 1	 σ = (1⊕ c(π1)⊕ 1)	 1	 π3, where π3 is a snow leopard permutation, so π 	 1	 σ is a
snow leopard permutation by Theorem 3.1.

Caffrey et al. (2015) show in their Corollary 2.24 that snow leopard permutations preserve parity. That
is, for any snow leopard permutation π and for all j with 1 ≤ j ≤ |π|, we know that π(j) is even if and
only if j is even. We can separate any parity-preserving permutation into two smaller permutations as
follows.

Definition 3.5. For any permutation π which preserves parity, we write πe to denote the permutation π
induces on its even entries and we write πo to denote the permutation π induces on its odd entries. Note
that if |π| = 2n+ 1 then |πe| = n and |πo| = n+ 1.

Although in general we will only consider snow leopard permutations of positive odd length, we include
one special case. If π = @, then since |π| = −1, we must have |πo| = 0 and |πe| = −1. This gives us
πo = ∅ and πe = @.
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Definition 3.6. We say a permutation σ is an even thread (resp. odd thread) whenever there is a snow
leopard permutation π of odd length such that πe = σ (resp. πo = σ), and we say an even thread α and
an odd thread β are entangled whenever there is a snow leopard permutation π with πe = α and πo = β.
We write ETn (resp. OTn) to denote the set of even (resp. odd) threads of length n.

Example 3.7. The permutation π = 587694321 is a snow leopard permutation with πo = 34521 and
πe = 4321, so 34521 is an odd thread, 4321 is an even thread, and these threads are entangled with each
other.

The recursive decomposition for snow leopard permutations that we gave in Theorem 3.1 induces a
similar decomposition on the odd and even threads.

Theorem 3.8. A permutation α is an even thread of nonnegative length if and only if there is an even
thread α1 and an odd thread β1 with

α = c(β1)	 1	 α1. (1)

Similarly, a permutation β is an odd thread of positive length if and only if there is an even thread α2 and
an odd thread β2 with

β = (1⊕ c(α2)⊕ 1)	 β2. (2)

Proof: (⇒) If α is an even thread of length n, then by definition there is a snow leopard permutation π of
length 2n+1 such that πe = α. Since π is a snow leopard permutation of odd positive length, by Theorem
3.1 there are snow leopard permutations π1 and π2 of odd length such that π = (1⊕ c(π1)⊕ 1)	 1	 π2.
We see that πe = c(πo

1)	 1	 πe
2.

If β is an odd thread of length n + 1, then by definition there is a snow leopard permutation π of
length 2n + 1 such that πo = β. Again, we can write π = (1 ⊕ c(π1) ⊕ 1) 	 1 	 π2. Here we see that
πo = (1⊕ c(πe

1)⊕ 1)	 πo
2 .

(⇐) Now suppose α is a permutation of length n and there are permutations β1 ∈ OTk and α1 ∈
ETn−k−1 such that α = c(β1) 	 1 	 α1. There must be snow leopard permutations π1 and π2 of
lengths 2k − 1 and 2n − 2k − 1, respectively, such that πo

1 = β1 and πe
2 = α1. By Theorem 3.1,

π = (1⊕c(π1)⊕1)	1	π2 is a snow leopard permutation of length 2n+1. Here, πe = c(πo
1)	1	πe

2 =
c(β1)	 1	 α1 = α.

Finally, suppose β is a permutation of length n + 1 and there are permutations α2 ∈ ETk and β2 ∈
OTn−k−1 such that β = (1 ⊕ c(α2) ⊕ 1) 	 β2. Since α2 is an even thread of length k, there is a snow
leopard permutation π1 of length 2k + 1 such that πe

1 = α2. Similarly, since β2 is an odd thread of
length n − k − 1, there is a snow leopard permutation π2 of length 2n − 2k − 3 such that πo

2 = β2. By
Theorem 3.1, π = (1 ⊕ c(π1) ⊕ 1) 	 1 	 π2 is a snow leopard permutation of length 2n + 1. Here,
πo = (1⊕ c(πe

1)⊕ 1)	 πo
2 = (1⊕ c(α2)⊕ 1)	 β2 = β.

Note that the decomposition of an odd thread given in Theorem 3.8 is unique, while the decomposition
of an even thread is not. That is, for a given odd thread β there is a unique even thread α1 and a unique
odd thread β1 for which (2) holds. The first entry of β corresponds to the first 1 in the decomposition, the
largest entry of β corresponds to the second 1, and then α1 and β1 are determined. But for a given even
thread there can be more than one pair (α2, β2), consisting of an even thread and an odd thread, for which
(1) holds.
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Example 3.9. The odd threads 4657312 and 7243561 can be decomposed as (1⊕ c(12)⊕ 1)	 312 and
(1⊕@⊕ 1)	 243561, respectively.

Example 3.10. The even thread α = 653421 can be decomposed as c(∅)	 1	 53421, c(1)	 1	 3421
or c(12435)	 1	 ∅.

In each of the three decompositions of α in Example 3.10, we see that the middle 1 corresponds to
a left-to-right maximum and fixed point in c(α). It’s not difficult to see that this will hold for all even
threads. In particular, suppose α is an even thread, and α1 and β1 are an even thread and an odd thread,
respectively, for which α = c(β1)	 1	α1. Then c(α) = β1 ⊕ 1⊕ c(α1), and there are exactly k = |β1|
entries of c(α) preceding c(α)(k + 1), all of which are less than c(α)(k + 1). It follows that c(α)(k + 1)
is a left-to-right maximum and fixed point in c(α). Since the connector of a snow leopard permutation
π is both a left-to-right maximum and fixed point in c(π), and the 1 in the decomposition of an even
thread corresponds to the connector of a snow leopard permutation, we will refer to an entry of an even
thread α as an eligible connector whenever it corresponds to an entry of c(α) which is both a left-to-right
maximum and a fixed point.

It is worth noting that the converse of the above statement does not hold: some even threads have
eligible connectors which do not arise from a decomposition of the thread. For example, α = 354621
is an even thread with eligible connectors 2 and 1. If 1 is to correspond to the 1 in a decomposition
c(β)	 1	 α1, then c(β) = 24351 and β = 42315. However, 42315 is not an odd thread. We will prove
that although not every eligible connector in an even thread α corresponds to a 1 in a decomposition of
α, the leftmost eligible connector does always correspond to such a 1. We begin with two simple ways
of constructing new threads from old threads, which arise from the fact that if π and σ are snow leopard
permutations of odd length then π 	 1	 σ is, too.

Proposition 3.11. Suppose β1 and β2 are odd threads. Then β1 	 β2 is also an odd thread, and the
permutations which are entangled with β1 	 β2 are exactly the permutations of the form α1 	 1 	 α2,
where α1 and α2 are entangled with β1 and β2, respectively.

Proof: If β1 and β2 are odd threads, then there exist snow leopard permutations π1 and π2 such that
πo
1 = β1 and πo

2 = β2. From Theorem 3.4, we know that π = π1 	 1	 π2 is a snow leopard permutation
with πo = πo

1 	 πo
2 . Thus, πo

1 	 πo
2 = β1 	 β2 is an odd thread.

To prove the rest of the Proposition, first suppose α1 and α2 are even threads which are entangled with
the odd threads β1 and β2, respectively. Then there are snow leopard permutations π1 and π2 such that
πe
1 = α1, πo

1 = β1, πe
2 = α2, and πo

2 = β2. By Theorem 3.4, π = π1 	 1 	 π2 is a snow leopard
permutation, and we find πe = α1 	 1	α2 and πo = β1 	 β2. Therefore, every permutation of the form
α1 	 1	 α2, where α1 and α2 are entangled with β1 and β2, respectively, is entangled with β1 	 β2.

To prove the reverse inclusion, suppose α is an even thread entangled with β1	β2, and π is a snow leop-
ard permutation with πe = α and πo = β1 	 β2. By Corollary 3.3, there are snow leopard permutations
π1, . . . , πk of odd length such that

π = (1⊕ c(π1)⊕ 1)	 1	 (1⊕ c(π2)⊕ 1)	 1	 · · · 	 1	 (1⊕ c(πk)⊕ 1).

The 1s in each summand 1 ⊕ c(πj) ⊕ 1 are all in odd positions, so there must be some m for which
β1 = πo

1 and β2 = πo
2 , where

π1 = (1⊕ c(π1)⊕ 1)	 1	 · · · 	 1	 (1⊕ c(πm)⊕ 1)
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and
π2 = (1⊕ c(πm+1)⊕ 1)	 1	 · · · 	 1	 (1⊕ c(πk)⊕ 1).

By Corollary 3.3, π1 and π2 are snow leopard permutations of odd length, so if α1 = πe
1 and α2 = πe

2,
then we have α = α1 	 1	 α2, and α1 and α2 are entangled with β1 and β2, respectively.

It is worth noting that even though @ is not an odd thread, it behaves like one in some circumstances.
For instance, if @ were an odd thread, then for any odd thread 1 	 β we could use Proposition 3.11 to
conclude that @ 	 1 	 β = β is also an odd thread. And if @ were an odd thread then we could use a
similar argument to show that if β 	 1 is an odd thread then β is also an odd thread. Even though these
arguments fail, the results still hold, as we show next.

Proposition 3.12. For any permutation β of nonnegative length, if 1	 β or β 	 1 is an odd thread then
β is an odd thread.

Proof: Suppose 1	 β is an odd thread. Then by (2) there is an even thread α2 and an odd thread β2 such
that 1	 β = (1⊕ c(α2)⊕ 1)	 β2, and it’s not hard to see that this decomposition is unique. Comparing
the largest elements on each side, we find α2 = @ and β2 = β, so β is an odd thread.

Now suppose β	1 is an odd thread; we argue by induction on |β	1|. If |β	1| = 1 then β	1 = 1 and
β = ∅, and the result holds. If |β	1| = 2 then β	1 = 21 and β = 1, and the result holds. If |β	1| ≥ 3
then by (2) there is an even thread α2 and an odd thread β2 such that β	 1 = (1⊕ c(α2)⊕ 1)	β2. Since
|1⊕c(α2)⊕1| ≥ 1, we must have |β2| < |β	1|. By construction there is a permutation β1 of nonnegative
length such that β2 = β1	 1, and by induction β1 is an odd thread. Therefore, (1⊕ c(α2)⊕ 1)	 β1 = β
is also an odd thread, by Theorem 3.8.

We now turn our attention to constructing new even threads from old even threads.

Proposition 3.13. Suppose α1 and α2 are even threads. Then α1	1	α2 is also an even thread, and if β1
and β2 are odd threads entangled with α1 and α2, respectively, then β1 	 β2 is an odd thread entangled
with α1 	 1	 α2.

Proof: If α1 and α2 are even threads, then there exist snow leopard permutations π1 and π2 such that
πe
1 = α1 and πe

2 = α2. From Theorem 3.4, we know that π = π1	 1	π2 is a snow leopard permutation,
with πe = πe

1 	 1	 πe
2. Thus, πe

1 	 1	 πe
2 = α1 	 1	 α2 is an even thread.

To prove the rest of the Proposition, suppose β1 and β2 are odd threads which are entangled with the
even threads α1 and α2, respectively. Then there are snow leopard permutations π1 and π2 such that
πe
1 = α1, πo

1 = β1, πe
2 = α2, and πo

2 = β2. By Theorem 3.4, π = π1 	 1 	 π2 is a snow leopard
permutation, and we find πe = α1 	 1 	 α2 and πo = β1 	 β2. In particular, β1 	 β2 is an odd thread
which is entangled with α1 	 1	 α2.

Note that if α1 and α2 are even threads, then there may be an odd thread β entangled with α1	 1	α2

which does not have the form β1 	 β2 for odd threads β1 and β2 which are entangled with α1 and α2,
respectively. For example, if α1 = ∅ and α2 = 1 then α1 	 1 	 α2 = 21, which is entangled with 123.
But α1 is only entangled with 1, α2 is only entangled with 12 and 21, and neither 1 	 12 = 312 nor
1	 21 = 321 is equal to 123.

The next step in proving that the leftmost eligible connector in an even thread always corresponds to a
connector in some snow leopard permutation is to show that if any other eligible connector corresponds
to a connector in a snow leopard permutation, then the even thread must begin with its largest element.
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Lemma 3.14. Suppose α is an even thread of length n, the permutation π is a snow leopard permutation
with πe = α, and the connector of π does not correspond with the leftmost eligible connector of α. Then
α(1) = n.

Proof: Let α(j) be the leftmost eligible connector in α. Since this eligible connector does not correspond
to the connector in π, there must be an eligible connector in α to the right of α(j) which does correspond
to the connector in π. Let this eligible connector be α(k), and note that k > j. Since α is an even thread,
(1) there is an even thread α1 and an odd thread β1 such that |β1| = k − 1 and

α = c(β1)	 1	 α1.

In particular, α(j) is among β1(1), . . . , β1(k − 1). Now by (2) there is an even thread α2 and an odd
thread β2 such that

β1 = (1⊕ c(α2)⊕ 1)	 β2. (3)

We claim that β2 = ∅.
To prove our claim, first note that c(β1)(j) is an eligible connector in α, so it is a left-to-right maximum

in c(α), a left-to-right minimum in α, and a left-to-right minimum in c(β1). But c(α)(j) is also a fixed
point in c(α), so the entries to its left in c(α) are exactly 1, 2, . . . , j − 1. This means the entries to the
left of α(j) in α are n, n− 1, . . . , n− j + 2, which are all of the entries of α which are larger than α(j).
Therefore, the entries to the left of c(β1)(j) are k − 1, k − 2, . . . , k − j + 1, the largest entries of c(β1),
and c(β1)(j) = k − j. But c(β1) = (1 	 α2 	 1) ⊕ β2, as in Figure 6. Now if c(β2) 6= ∅, and c(β1)(j)

j

β1(j)

α2

β2

Fig. 6: A decomposition of c(β1).

falls in 1	 α2 	 1, then one of k − 1, . . . , k − j + 1 is to the right of c(β1)(j), which is a contradiction.
On the other hand, if c(β1)(j) falls in c(β2), then there is an entry smaller than c(β1)(j) to the left of
c(β1)(j) (since 1	 α2 	 1 must be nonempty), which is also a contradiction. Therefore, β2 = ∅.

Since β2 = ∅, by (3) we have β1 = 1⊕ c(α2)⊕ 1, so β1(1) = 1 and α(1) = n, as desired.

Now that we have assembled all of the necessary tools, we are ready to show that the leftmost eligible
connector in an even thread always corresponds to a connector in some snow leopard permutation.
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Theorem 3.15. If α is an even thread of length n, then there exists a snow leopard permutation π with
πe = α whose connector corresponds to the leftmost eligible connector in α. In particular, if this entry is
c(α)(n− j + 1), then π(1) = 2j + 1. By convention, we say j = 0 if no such entry exists.

Proof: Suppose α is an even thread of length n, and π is a snow leopard permutation with πe = α. If the
connector of π corresponds with the leftmost eligible connector of α, then the result holds. If not, then by
Lemma 3.14 we have α(1) = n. By (1) there is an even thread α and an odd thread β such that

α = c(β1)	 1	 α1. (4)

We claim that α = 1	 α4 for some even thread α4.
Our claim follows from (4) if β1 = ∅, so suppose β1 6= ∅. By (2) there is an odd thread β2 and an even

thread α2 with
β1 = (1⊕ c(α2)⊕ 1)	 β2,

which implies
α = ((1	 α2 	 1)⊕ c(β2))	 1	 α1.

Since α(1) = n, we must have β2 = ∅. Furthermore, 1	α1 = ∅	1	α1 is an even thread by Proposition
3.13; writing α3 to denote this thread, we have

α = 1	 α2 	 1	 α3.

Using Proposition 3.13 again, we see that α2	 1	α3 is also an even thread, which we denote by α4, and
our claim follows.

To complete the proof, note that since α4 is an even thread, there is a snow leopard permutation π with
πe = α4. By Theorem 3.4, 1	 1	 π is a snow leopard permutation with even thread α, whose connector
corresponds to α(1), the leftmost eligible connector of α.

Theorem 3.15 tells us that while a given even thread α may have several decompositions as in (1), it
always has such a decomposition in which the 1 in (1) corresponds to the leftmost eligible connector in
α. This decomposition is clearly unique, so we will call it the leftmost decomposition of α.

4 Even Threads, Odd Threads, and Restricted Catalan Paths
Now that we have recursive decompositions of the even and odd threads, and we have investigated the
extent to which these decompositions are unique for a given thread, it’s natural to consider the numbers of
these threads of each length. In Table 2 we have the number of even and odd threads of length six or less.

n −1 0 1 2 3 4 5 6
|ETn| 1 1 1 2 6 17 46 128
|OTn| 0 1 1 2 4 9 23 63

Tab. 2: The number of even threads and odd threads of length six or less.

It turns out that these numbers also count some more familiar combinatorial objects. To describe these
objects, recall that a Catalan path of length n is a lattice path from (0, 0) to (n, n) consisting of unit North
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(0, 1) and East (1, 0) steps which does not pass below the line y = x. For convenience, we sometimes
write a Catalan path as a sequence of Ns and Es, with N denoting a North step and E denoting an East
step. For instance, the five Catalan paths of length three are NNNEEE, NNENEE, NNEENE,
NENNEE, and NENENE. If p is a Catalan path of length n, then we will write pr to denote the
reverse of p, which is the path obtained by reflecting p over the line x + y = n. In terms of Ns and Es,
reversing a Catalan path is equivalent to reversing the corresponding string and then exchanging Ns and
Es. For example, if p = NENNEE then pr = NNEENE.

Sapounakis et al. (2007) show that the number of Catalan paths of length n ≥ 1 with k occurrences of
NEEN (in consecutive entries) is given by

an,k =
1

n

(
n

k

) bn−1
2 c∑

j=k

(−1)j−k
(
n− k
j − k

)(
2n− 3j

n− j + 1

)
.

Notice that when k = 0 the first few terms of this sequence (beginning with n = 1) are 1, 2, 4, 9, and
23, which suggests that |OTn| = an,0. On the other hand, the values of |ETn| appear to match OEIS
sequence A102403, whose nth term is the number of Catalan paths of length n with no ascent of length
exactly two. With this in mind, we introduce some notation for the sets of these paths of a given length.

Definition 4.1. For each n ≥ 0, we write ENNEn to denote the set of Catalan paths of length n which
have no ascent of length exactly two. Similarly, we write NEENn to denote the set of Catalan paths of
length n which do not contain the four consecutive steps NEEN .

Our data suggest that |ETn| = |ENNEn+1| and |OTn| = |NEENn| for each nonnegative integer n.
To prove these results, we introduce decompositions of the paths in ENNEn and NEENn which mirror
our decompositions of the even and odd threads, respectively.

Theorem 4.2. Suppose n is a positive integer. For each p ∈ ENNEn, there are unique nonnegative
integers k and l, and unique Catalan paths a ∈ ENNEk and b ∈ NEENl, such that n = k + l + 1,
p = aNbrE, and b does not end with NE. Conversely, for every a ∈ ENNEk and b ∈ NEENl such
that b does not end with NE, the path aNbrE is in ENNEn, where n = k + l + 1.

Proof: (⇒) Suppose p ∈ ENNEn. Since p is a Catalan path which begins at (0, 0) and ends at (n, n),
it must return to the diagonal y = x at least once. Suppose the last time p touches the diagonal before
(n, n) is at (k, k). Let a denote the subpath of p from (0, 0) to (k, k) and let b denote the subpath of p
from (k, k + 1) to (n − 1, n). Then a and b are Catalan paths, and |a| = k and |b| = n − k − 1, so
|a| + |b| = n − 1. Furthermore, if c and d are any Catalan paths with |c| = k and |d| = n − k − 1
then the Catalan path cNdrE has its last return to the diagonal before (n, n) at (k, k). Therefore, a, b,
k, and l = n − k − 1 are uniquely determined by p, and it remains only to show that a ∈ ENNEk and
br ∈ NEENn−k−1.

Since a is a subpath of p and p contains no ascent of length exactly two, neither does a. Thus a ∈
ENNEk.

To show br ∈ NEENn−k−1, first notice that since NbE ∈ ENNEn−k, if b contains an ascent of
length exactly two then this ascent must start the path. Equivalently, if br contains a plateau of length ex-
actly two, then this plateau must end the path. Thus, br does not containNEEN , so br ∈ NEENn−k−1.
In addition, br cannot start with NE, for otherwise the Nb portion of p would contain an ascent of length
exactly two. Thus, br does not end with an NE.
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(⇐) Suppose a ∈ ENNEk and b ∈ NEENl, and b does not end with NE. We want to show that
the path aNbrE does not contain an ascent of length exactly two. Since a ∈ ENNEk, if aNbrE did
contain such an ascent, it would have to occur in the NbrE portion of the path. Additionally, b contains
no NEEN , so br contains no ENNE. Thus, the problematic ascent would have to begin with the N of
NbrE. However, we assumed that b does not end with NE, so br does not begin with NE. Thus, there
is no problematic ascent in aNbrE, and this path of length n = k + l + 1 will be in ENNEn.

Theorem 4.3. Suppose n is a positive integer. For each p ∈ NEENn there are unique nonnegative
integers k and l, and unique Catalan paths a ∈ ENNEk and b ∈ NEENl, such that n = k + l+ 1 and
p = arNbE. Conversely, for every a ∈ ENNEk and b ∈ NEENl, the path arNbE is in NEENn,
where n = k + l + 1.

Proof: (⇒) Suppose p ∈ NEENn. As in the proof of Theorem 4.2, let a denote the subpath of p from
(0, 0) to (k, k) and let b denote the subpath of p from (k, k + 1) to (n − 1, 1), where (k, k) is the point
at which p last touches the diagonal before (n, n). As before, for any Catalan paths c and d with |c| = k
and |d| = n − k − 1 the Catalan path crNdE has its last return to the diagonal at (k, k), so a, b, k, and
l = n− k − 1 are uniquely determined by p.

Since NbE is a path in NEENn−k, we have b ∈ NEENn−k−1. Similarly, since a does not contain
NEEN , the path ar does not contain ENNE. Therefore, if ar contains an ascent of length exactly two,
then this ascent must come at the beginning of the path, in which case ar begins with NNE. In this case,
a would end with NEE, so p would contain NEEN . This contradiction shows ar ∈ ENNEk.

(⇐) Suppose a ∈ ENNEk and b ∈ NEENl, and let p = arNbE. We want to show that p does
not contain NEEN . Since there is no NEEN in b, if p contains NEEN , then it must fall in the
arN portion of p. However, a ∈ ENNEk so a has no ascent of length exactly two, meaning ar has
no plateau of length exactly two. Thus, arN also cannot contain NEEN , so p ∈ NEENn, where
n = |a|+ |b|+ 1 = k + l + 1.

Now that we can decompose threads and Catalan paths in similar ways, we can recursively define
functions from ENNEn+1 to ETn, and from NEENn to OTn; these functions will turn out to be
bijections.

Theorem 4.4. For each nonnegative integer n, there exist unique functions

H : ENNEn+1 → ETn

J : NEENn → OTn

such that H(∅) = @, J(∅) = ∅, if p = aNbrE for Catalan paths a and b then

H(p) = c(J(b))	 1	H(a), (5)

and if p = arNbE for Catalan paths a and b then

J(p) = (1⊕ c(H(a))⊕ 1)	 J(b). (6)

Proof: The result is clear for n = 0, so suppose n ≥ 1.
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Since every Catalan path p of positive length has unique decompositions into the forms aNbrE and
arNbE, some simple computations with lengths shows that there exist unique functionsH : ENNEn+1 →
Sn and J : NEENn → Sn satisfying (5) and (6). So it’s sufficient to show that if p ∈ ENNEn+1 then
H(p) ∈ ETn and if p ∈ NEENn then J(p) ∈ OTn.

The result is true by construction for n = 0, and it’s routine to check that H(NE) = ∅ ∈ ET0 and
J(NE) = 1 ∈ OT1, so suppose n ≥ 2 and the result holds for all paths of length n − 1 or less. If
p ∈ ENNEn then by Theorem 4.2 there are unique paths a ∈ ENNEk and b ∈ NEENl, such that
n = k+ l+1, p = aNbrE, and b does not end with NE. By induction H(a) ∈ ETk−1 and J(b) ∈ OTl,
so by (5) and (1) the permutation H(p) is in ETn−1. The proof that if p ∈ NEENn then J(p) ∈ OTn is
similar, using Theorem 4.3, along with (6) and (2).

In Table 3 we have the values of H and J on paths of length three or less. This data suggests H and J

path a H(a)
∅ @
NE ∅

NENE 1
NENENE 21
NNNEEE 12

NNNNEEEE 123
NNNENEEE 132
NNNEENEE 213
NNNEEENE 312
NENNNEEE 231
NENENENE 321

path a J(a)
∅ ∅
NE 1

NENE 12
NNEE 21

NNNEEE 321
NNENEE 312
NENNEE 231
NENENE 123

Tab. 3: Values of H(a) and J(a) for small |a|.

are bijections; to prove this, we construct their inverses.

Theorem 4.5. For each nonnegative integer n, there exist unique functions

F : ETn → ENNEn+1

G : OTn → NEENn

such that F (@) = ∅, G(∅) = ∅, if π = c(β) 	 1 	 α for an even thread α and an odd thread β is the
leftmost decomposition of the even thread π, then

F (π) = F (α)NG(β)rE, (7)

and if π = (1⊕ c(α)⊕ 1)	 β for an even thread α and an odd thread β then

G(π) = F (α)rNG(β)E. (8)

Proof: This is similar to the proof of Theorem 4.4.
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Theorem 4.6. F and G are the inverse functions of H and J , respectively.

Proof: It’s routine to check that H(F (@)) = @, H(F (∅)) = ∅, F (H(∅)) = ∅, J(G(∅)) = ∅, and
G(J(∅)) = ∅, so the map H ◦ F is the identity on ET−1 and ET0, the map F ◦ H is the identity on
ENNE0, the map J ◦G is the identity on OT0, and the map G ◦ J is the identity on NEEN0. Now fix
n ≥ 1, and suppose by induction that for all k < n we have that H ◦ F is the identity on ETk, F ◦H is
the identity on ENNEk, J ◦G is the identity on OTk, and G ◦ J is the identity on NEENk. It turns out
that the four facts we need to prove are not completely independent, so we start with J ◦G.

To show J ◦G is the identity on OTn, suppose we have β ∈ OTn, and let β = (1 ⊕ c(α1) ⊕ 1) 	 β1
be the decomposition of β from (2). By (8) we have

G(β) = F (α1)
rNG(β1)E.

Now when we decompose G(β) in the form arNbE, we find a = F (α1) and b = G(β1). Therefore, by
(6) we have

J(G(β)) = (1⊕ c(H(F (α1)))⊕ 1)	 J(G(β1)).

Since |β1| < n and |α1| < n, by induction we have

J(G(β)) = (1⊕ c(α1)⊕ 1)	 β1
= β,

as desired.
To show H ◦ F is the identity on ETn, suppose we have α ∈ ETn, and let α = c(β1)	 1	 α1 be the

leftmost decomposition of α. By (7) we have

F (α) = F (α1)NG(β1)
rE.

Now when we decompose F (α) in the form aNbrE, we find a = F (α1) and b = G(β1). Therefore, by
(5) we have

H(F (α)) = c(J(G(β1)))	 1	H(F (α1)).

Now if α1 = @ then |β1| = n, and by induction and our previous case we have

H(F (α)) = c(β1)	 1	 α1

= α,

as desired. On the other hand, if α1 6= @ then |α1| < n and |β1| < n, and the result follows by induction.
To show F ◦H is the identity on ENNEn, suppose we have p ∈ ENNEn, and let p = aNbrE for

Catalan paths a and b. By (5) we have

H(p) = c(J(b))	 1	H(a). (9)

We claim this is the leftmost decomposition of H(p). To see this, first note that since J(b) is an odd
thread and H(a) is an even thread, there are snow leopard permutations π1 and π2 such that J(b) = πo

1

and H(a) = πe
2. Observe that

((1⊕ c(π1)⊕ 1)	 1	 π2)e = c(J(b))	 1	H(a),
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and the connector in (1⊕ c(π1)⊕ 1)	 1	 π2 corresponds with the 1 in c(J(b))	 1	H(a). Therefore,
by Lemma 3.14, if c(J(b))	 1	H(a) is not the leftmost decomposition of H(p) then it begins with its
largest entry. This implies that J(b) begins with 1. Now by (6), if b = ar1Nb1E then J(b) = ∅, so b1 = ∅,
and b ends with NE. This means br begins with NE, and p = aNbrE has an ascent of length exactly
two, contradicting the fact that p ∈ ENNEn.

Since the right side of (9) is the leftmost decomposition of H(p), by (7) we have

F (H(p)) = F (H(a))NG(J(b))rE

= aNbrE

= p,

by induction.
To show G ◦ J is the identity on NEENn, suppose we have p ∈ NEENn, and let p = arNbE for

Catalan paths a and b. By (6) we have

J(p) = (1⊕ c(H(a))⊕ 1)	 J(b).

Since H(a) is an even thread, J(b) is an odd thread, and the decomposition of an odd thread in (2) is
unique, by (8) we have

G(J(p)) = F (H(a))rNG(J(b))E.

Now the result follows by induction.

5 Entangled Threads
For each n ≥ −1, there is a bipartite graph whose vertices are the even threads of length n and the odd
threads of length n+ 1, in which two vertices are adjacent whenever they are entangled. In Section 4 we
gave a partial answer to the question of how many vertices this graph has, by giving bijections between the
even threads and the Catalan paths with no ascent of length exactly two, and between the odd threads and
the Catalan paths with noNEEN . Nevertheless, there are numerous other questions one might ask about
this graph. In this section we start to answer one of these questions, by characterizing the even threads
of length n − 1 which are entangled with the increasing permutation 12 · · ·n, and by characterizing the
odd threads of length n + 1 which are entangled with the decreasing permutation n · · · 21. Throughout
we write �n (resp. �n) to denote the increasing (resp. decreasing) permutation 12 · · ·n (resp. n · · · 21).

To state and prove our results, we first need some terminology. Recall that an involution π is a per-
mutation π with π = π−1. As Guibert (1995) and Egge (2004) have noted, involutions which avoid the
classical pattern 3412 have a simple recursive structure: a permutation π is a 3412-avoiding involution if
and only if one of the following mutually exclusive conditions holds: (i) π = ∅, (ii) π = 1 ⊕ π1 for a
3412-avoiding involution π1, or (iii) π = (1 	 π1 	 1) ⊕ π2 for 3412-avoiding involutions π1 and π2.
Moreover, when π satisfies (ii) or (iii), the 3412-avoiding involutions π1 and π2 are uniquely determined.
Using these results, it is routine to show that the number of 3412-avoiding involutions of length n is the
Motzkin number Mn, which may be defined by M0 = 1 and Mn = Mn−1 +

∑n
k=2Mk−2Mn−k for

n ≥ 1. We will encounter another family of objects counted by the Motzkin numbers in Section 6, and the
interested reader can find still more such families of objects in the paper of Donaghey and Shapiro (1977)
and Exercise 6.38 of the book of Stanley (1999). As we show next, the even threads entangled with �n

and the odd threads entangled with �n are easy to describe in terms of 3412-avoiding involutions.
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Theorem 5.1. (i) For any integer n ≥ 1, the even threads entangled with the odd thread �n are the
3412-avoiding involutions of length n− 1.

(ii) For any integer n ≥ 0, the odd threads entangled with the even thread �n are the complements of
the 3412-avoiding involutions of length n+ 1.

Proof: The odd thread �1 = 1 is only entangled with the even thread ∅, which is the only 3412-avoiding
involution of length 0. Similarly, the even thread �1 = 1 is entangled with both 12 and 21, which are the
complements of the 3412-avoiding involutions of length 2. Therefore, the results holds for n = 1. Now
fix n ≥ 2, and suppose the result holds for all k < n; we argue by induction on n.

Suppose α is an even thread entangled with �n. Then there is a snow leopard permutation π such
that πe = α and πo = �n. By Theorem 3.1, there are snow leopard permutations π1 and π2 such that
π = (1 ⊕ c(π1) ⊕ 1) 	 1 	 π2. Since πo = �n, we see that π(1) = 1, which means π2 = @ and
π = 1⊕ c(π1)⊕ 1. Now πe

1 = �n−2, so by induction c(πo
1) is a 3412-avoiding involution. On the other

hand, α = πe = c(πo
1), so α is also a 3412-avoiding involution.

For the reverse inclusion, suppose α is a 3412-avoiding involution of length n − 1. By induction c(α)
is an odd thread entangled with �n−2, so there is a snow leopard permutation π1 with πo

1 = c(α) and
πe
1 = �n−2. By Theorem 3.1, the permutation 1⊕c(π1)⊕1 is a snow leopard permutation with πo = �n

and πe = α, so α is an even thread entangled with �n.
Suppose β is an odd thread entangled with �n. Then there is a snow leopard permutation π such

that πo = β and πe = �n. By Theorem 3.1, there are snow leopard permutations π1 and π2 such that
π = (1⊕ c(π1)⊕ 1)	 1	 π2. In addition,

β = πo = (1⊕ c(πe
1)⊕ 1)	 πo

2

and
�n = πe = c(πo

1)	 1	 πe
2,

which implies πo
1 = �k and πe

2 = �n−k−1 for some k with−1 ≤ k ≤ n−1. By induction and a previous
case, πe

1 and c(πo
2) are 3412-avoiding involutions, so c(β) = (1	πe

1	1)⊕ c(πo
2) is also a 3412-avoiding

involution.
For the reverse inclusion, suppose c(β) is a 3412-avoiding involution of length n + 1. Then there are

3412-avoiding involutions α1 of length k and β1 of length n− k − 1, where −1 ≤ k ≤ n− 1, such that

c(β) = (1	 α1 	 1)⊕ β1.

By induction and a previous case, α1 is an even thread entangled with �k+1 and c(β1) is an odd thread
entangled with �n−k−2. Therefore, there are snow leopard permutations π1 and π2 with πe

1 = α1,
πo
1 = �k+1, πo

2 = c(β1), and πe
2 = �n−k−2. Now π = (1 ⊕ c(π1) ⊕ 1) 	 1 	 π2 is a snow leopard

permutation by Theorem 3.1, and it has

πo = (1⊕ c(πe
1)⊕ 1)	 πo

2

= (1⊕ c(α1)⊕ 1)	 c(β1)

and

πe = c(πo
1)	 1	 πe

2

= �k+1 	 1	�n−k−2

= �n.
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Since c(πo) = (1	 α1 	 1)⊕ β1 = c(β), we see that β is an odd thread entangled with �n.

By combining Theorem 5.1 with Proposition 3.11, we can characterize the even threads entangled with
a much larger class of odd threads.

Definition 5.2. For m ≥ 1 and any positive integers l1, . . . , lm, we write �l1,...,lm to denote the permu-
tation �l1 	�l2 	 · · · 	�lm . We sometimes call a permutation of the form �l1,...,lm up-layered.

Corollary 5.3. Form ≥ 1 and any positive integers l1, . . . , lm, the permutation �l1,...,lm is an odd thread,
and the even threads entangled with it are the permutations of the form π1 	 1	 π2 	 1	 · · · 	 1	 πm,
where πj is a 3412-avoiding involution of length lj − 1 for 1 ≤ j ≤ m.

Proof: This follows from Theorem 5.1(i) and Proposition 3.11 by induction on m.

Corollary 5.4. For any m ≥ 1 and any positive integers l1, . . . , lm, there are exactly Ml1−1 · · ·Mlm−1
even threads entangled with the odd thread �l1,...,lm .

Proof: This is immediate from Corollary 5.3, since the number of 3412-avoiding involutions of length
lj − 1 is Mlj−1 for 1 ≤ j ≤ m.

It is natural at this point to try to use Theorem 5.1(ii) and Proposition 3.13 to prove a analogues of
Corollaries 5.3 and 5.4 for even threads which are layered in the opposite direction. Unfortunately, doing
this only allows us to recover Theorem 5.1(ii). Nevertheless, we can use Corollary 5.3 to prove the
analogues we seek. We begin by making the phrase “layered in the opposite direction” precise.

Definition 5.5. For m ≥ 1 and any positive integers l1, . . . , lm, we write �l1,...,lm to denote the permu-
tation �l1 ⊕�l2 ⊕ · · · ⊕�lm . We sometimes call a permutation of the form �l1,...,lm down-layered.

We now have a natural analogue of Corollary 5.3 for down-layered even threads.

Theorem 5.6. For m ≥ 1 and any positive integers l1, . . . , lm, the permutation �l1,...,lm is an even
thread, and the odd threads entangled with it are the permutations of the form 1⊕π1⊕1⊕π2⊕1⊕· · ·⊕
1⊕ πm ⊕ 1, where πj is the complement of a 3412-avoiding involution of length lj − 1 for 1 ≤ j ≤ m.

Proof: First note that the result is Theorem 5.1(ii) when m = 1, so we may assume m ≥ 2.
Since @ is an even thread and �l1,...,lm is an odd thread, by Theorem 3.8 we see that �l1,...,lm =

c(�l1,...,lm 	 1	@ is an even thread.
To prove the rest of the result, suppose π is a snow leopard permutation with πe = �l1,...,lm . By

Theorem 3.1, there are snow leopard permutations σ1 and σ2 such that π = (1	 c(σ1)	 1)	 1	 σ2. If
σ2 6= @ then there is an odd thread β1 and a nonempty even thread α1 such that πe = c(β1)	 1	 α1. In
c(β1)	 1	 α1, the largest entry appears to the left of the smallest entry, but in πe = �l1,...,lm the largest
entry appears to the right of the smallest entry (since m ≥ 2). Therefore, σ2 = @ and π = 1⊕ c(σ1)⊕ 1.

Since πe = �l1,...,lm , we have σo
1 = c(�l1,...,lm) = �l1,...,lm . Now by Corollary 5.3, the permutation

σe
1 has the form π1 	 1 	 · · · 	 1 	 πlm , where πj is a 3412-avoiding involution of length lj − 1 for

1 ≤ j ≤ m. This means πo = 1⊕ c(π1)⊕ 1⊕ · · · ⊕ 1⊕ c(πlm)⊕ 1, and the result follows.

Corollary 5.7. For m ≥ 1 and any positive integers l1, . . . , lm, there are exactly Ml1−1 · · ·Mlm−1 odd
threads entangled with the even thread �l1,...,lm .
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Proof: This is immediate from Theorem 5.6, since the number of 3412-avoiding involutions of length
lj − 1 is Mlj−1 for 1 ≤ j ≤ m.

Inspired by Corollaries 5.4 and 5.7, along with some numerical data, we make the following conjecture.

Conjecture 5.8. For any even (resp. odd) thread α (resp. β), the number of odd (resp. even) threads
entangled with α (resp. β) is a product of Motzkin numbers.

We have verified Conjecture 5.8 for all even threads of length eleven or less and all odd threads of
length twelve or less.

6 Janus Threads
Having investigated the entanglement relation between even and odd threads, we now turn our attention
to those threads which are both even and odd.

Definition 6.1. We say a permutation is a Janus thread whenever it is both an even thread and an odd
thread. For convenience, we also regard the antipermutation @ as a Janus thread (of length −1). For
each n ≥ −1, we write JTn to denote the set of Janus threads of length n.

Remarkably, for small n nearly every odd thread is also a Janus thread: the smallest odd thread that is
not also an even thread is 3412. Nevertheless, it’s natural to ask how many Janus threads of length n there
are. In Table 4 we have the number of Janus threads of length nine or less.

n −1 0 1 2 3 4 5 6 7 8 9
|JTn| 1 1 1 2 4 8 17 37 82 185 423

Tab. 4: The number of Janus threads of length nine or less.

As was the case for even and odd threads, Janus threads are related to a certain kind of lattice path. To
describe these lattice paths, first recall that a Motzkin path of length n is a lattice path from (0, 0) to (n, 0)
consisting of unit Up (1, 1), Down (1,−1), and Level (1, 0) steps which does not pass below the x-axis.
As their name suggests, the Motzkin paths of length n are counted by the Motzkin number Mn, which we
met in Section 5. A peak in a Motzkin path is a pair of consecutive steps in which the first step is an Up
step and the second is a Down step. We say a Motzkin path is peakless whenever it has no peaks, and we
write UDn to denote the set of peakless Motzkin paths of length n. For example, UD5 consists of eight
Motzkin paths: LLLLL, LLULD, LULDL, ULDLL, LULLD, ULLDL, ULLLD, and ULLLD. In
Table 5 we have the number of peakless Motzkin paths of length ten or less. These paths are counted by

n 0 1 2 3 4 5 6 7 8 9 10
|UDn| 1 1 1 2 4 8 17 37 82 185 423

Tab. 5: The number of peakless Motzkin paths of length ten or less.

a certain sequence of generalized Catalan numbers, which is sequence A004148 in the OEIS; its terms
satisfy an = an−1 +

∑n−2
k=1 akan−2−k for n ≥ 0.

As a comparison of Tables 4 and 5 suggests, Janus threads of length n are in bijection with peakless
Motzkin paths of length n + 1. As a first step in constructing a bijection between these two sets, we
describe how to construct peakless Motzkin paths recursively.
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Theorem 6.2. Suppose n is a positive integer. For each p ∈ UDn, exactly one of (i) and (ii) below holds.

(i) There is a unique Motzkin path a ∈ UDn−1 such that p = La.

(ii) There are unique integers k ≥ 1 and l ≥ 0 and unique Motzkin paths a ∈ UDk and b ∈ UDl such
that n = k + l + 2 and p = UaDb.

Conversely, both of the following hold.

(iii) For every a ∈ UDn−1, we have La ∈ UDn.

(iv) For any integers k ≥ 1 and l ≥ 0 with n = k + l + 2, and any a ∈ UDk and b ∈ UDl, we have
UaDb ∈ UDn.

Proof: This is similar to the proof of Theorem 4.2.

We can also use our recursive decompositions of the even and odd threads in Theorem 3.8 to describe
how to construct Janus threads recursively.

Theorem 6.3. Suppose γ is a permutation of length at least one which begins with its largest entry. Then
γ is a Janus thread if and only if there is a Janus thread γ1 such that γ = 1 	 γ1. Moreover, when these
conditions hold, γ1 is determined by γ.

Proof: (⇒) Suppose γ is a Janus thread which begins with its largest entry. Since γ begins with its largest
entry, it has the form 1 	 γ1 for a unique permutation γ1. In particular, the last statement of the theorem
holds.

To show γ1 is an odd thread, first note that since γ is an odd thread, by (2) there is an even thread α1

and an odd thread β1 such that γ = (1⊕ c(α1)⊕ 1)	 β1. Since γ begins with its largest entry, we must
have α1 = @ and β1 = γ1, so γ1 is an odd thread.

To show γ1 is an even thread, and therefore a Janus thread, first note that since γ is an even thread, by
(1) and Theorem 3.15 there is an even thread α2 and an odd thread β2 such that γ = c(β2)	 1	 α2, and
the 1 corresponds to the leftmost eligible connector in γ. If c(β2) begins with its largest entry, then β2
begins with 1, and the first entry of γ is an eligible connector. However, this contradicts the fact that the
leftmost eligible connector in γ is not in β2. Therefore, c(β2) cannot begin with its largest entry. Since
γ = c(β2)	 1	 α2 does begin with its largest entry, we must have β2 = @ or β2 = ∅. The first of these
contradicts the fact that the leftmost eligible entry of γ does not occur in α2, so we must have γ = 1	α2.
Therefore, γ1 = α2 is an even thread.

(⇐) This is immediate from Propositions 3.11 and 3.13, the fact that 1 is an odd thread, and the fact
that ∅ is an even thread.

Theorem 6.4. Suppose γ is a permutation of length at least two which does not begin with its largest entry.
Then γ is a Janus thread if and only if there are Janus threads γ1 and γ2 such that γ1 has nonnegative
length and γ = (1⊕c(γ1)⊕1)	1	γ2. Moreover, when these conditions hold, γ1 and γ2 are determined
by γ.

Proof: (⇒) Suppose γ is a Janus thread which does not begin with its largest entry. Since γ is an odd
thread, by (2) there is an even thread α1 and an odd thread β1 such that γ = (1 ⊕ c(α1) ⊕ 1) 	 β1. The
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second 1 in this decomposition corresponds to the largest entry of γ, so this decomposition is unique, and
the last statement of the theorem holds. Moreover, since γ does not begin with its largest entry, α1 has
nonnegative length. Since all odd threads have nonnegative length, β1 also has nonnegative length.

We claim β1 begins with its largest entry. To prove this, suppose by way of contradiction that β1 does
not begin with its largest entry. Then by (2) there is an even thread α2 of nonnegative length and an odd
thread β2 such that β1 = (1 ⊕ c(α2) ⊕ 1) 	 β2. Repeating this argument as long as βj does not begin
with its largest entry, we find there are even threads α1, . . . , αk of nonnegative length and an odd thread
βk+1 such that

γ = (1⊕ c(α1)⊕ 1)	 (1⊕ c(α2)⊕ 1)	 · · · 	 (1⊕ c(αk)⊕ 1)	 1	 βk+1. (10)

Furthermore, because γ is an even thread, c(γ) must have a fixed point which is a left-to-right maximum.
This cannot occur in any of the summands 1 ⊕ c(αj) ⊕ 1, so the leftmost eligible connector in γ must
correspond to the rightmost 1 in the decomposition in (10). By Theorem 3.15, the permutation (1 ⊕
c(α1)⊕ 1)	 (1⊕ c(α2)⊕ 1)	 · · · 	 (1⊕ c(αk)⊕ 1) is the complement of an odd thread and βk+1 an
even thread. Now it follows that (1	 α1 	 1)⊕ · · · ⊕ (1	 αk 	 1) is an odd thread, and by (2) there is
an even thread α and an odd thread β such that (1	α1 	 1)⊕ · · · ⊕ (1	αk 	 1) = (1⊕ c(α)⊕ 1)	 β.
Matching largest entries on each side of this equation, we find β = αk 	 1. But all of the entries of β
in (1 ⊕ c(α) ⊕ 1) 	 β are less than every entry to the left of the largest entry, while all of the entries of
αk 	 1 in (1 	 α1 	 1) ⊕ · · · ⊕ (1 	 αk 	 1) are greater than all of the entries to the left of the largest
entry. This contradicts the facts that k ≥ 2 and α1 6= @.

Since β1 begins with its largest entry, we now know that we have γ = (1⊕c(γ1)⊕1)	1	γ2, where γ1
has nonnegative length, γ1 is an even thread, 1	γ2 is an odd thread, and 1⊕ c(γ1)⊕1 is the complement
of an odd thread. Furthermore, the rightmost 1 in this decomposition is the leftmost eligible connector in
γ, so by Theorem 3.15 we see that γ2 is an even thread. On the other hand, since 1	 γ2 is an odd thread,
by Proposition 3.12, we have that γ2 is also an odd thread. Therefore, γ2 is a Janus thread.

To see that γ1 is an odd thread, first note that 1⊕ c(γ1)⊕ 1 is the complement of an odd thread means
1	 γ1 	 1 is an odd thread. Now the result follows from Proposition 3.12.

(⇐) Suppose γ1 and γ2 are Janus threads. The fact that (1 ⊕ c(γ1) ⊕ 1) 	 1 	 γ2 is an odd thread is
immediate from Proposition 3.11, the fact that 1 is an odd thread, and (2). Similarly, since γ1 is an odd
thread, 1	 γ1 	 1 is also an odd thread by Proposition 3.11. Now the fact that (1⊕ c(γ1)⊕ 1)	 1	 γ2
is an even thread follows from (1), since γ2 is an even thread.

The fact that our Janus thread decompositions exactly match our peakless Motzkin path decompositions
allows us to construct a recursive bijection between these two sets.

Theorem 6.5. For each integer n ≥ −1, there is a unique bijection

K : JTn → UDn+1

such that K(@) = ∅, K(∅) = L, if γ = 1 	 γ1 for a Janus thread γ then K(γ) = LK(γ1) and if
γ = (1⊕ c(γ1)⊕ 1)	 1	 γ2 for Janus threads γ1 and γ2 then K(γ) = UK(γ1)DK(γ2).

Proof: This is similar to the proof of Theorems 4.4 and 4.6, using Theorems 6.2, 6.3, and 6.4.

Although our description of K above is recursive, it turns out this map has an elegant direct combina-
torial description as well. We close the section with this alternative description of K.
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Definition 6.6. For any Janus thread of length n ≥ −1, we define the lattice path K(γ) as follows. For
n = −1 or n = 0 we have K(@) = ∅ and K(∅) = L. If n ≥ 1, then we obtain K(γ) as follows.

1. Write n+ 1, followed by γ, followed by 0.

2. For each pair of consecutive entries in this new sequence, if the entries are consecutive integers (in
either order) then write L between them. If the consecutive entries are not consecutive integers,
then write U between them if they form an ascent, and D if they form a descent.

3. In the resulting sequence of n+1 Us, Ls, and Ds, number the subsequence of Us and Ds from left
to right, beginning with 1. Change every odd-numbered U to a D and every odd-numbered D to a
U .

The resulting sequence of Us, Ls, and Ds is the lattice path K(γ).
Example 6.7. When γ = 576894312 we write 10 576894312 0, and we obtain the sequenceDULULDLDLD.
Changing the odd-numbered Us to Ds and the odd-numbered Ds to Us, we find that K(578694312) =
UULDLDLULD.

In Example 6.7 we obtain a peakless Motzkin path, and in fact it’s not difficult to check thatK(576894312) =
K(576894312). As we show in our final result, K(γ) is a peakless Motzkin path for every Janus thread
γ, and K(γ) = K(γ).

Theorem 6.8. For any Janus thread γ, we have K(γ) = K(γ).

Proof: The result is easy to check when γ has length less than two, so suppose |γ| ≥ 3; we argue by
induction on the length of γ.

If γ begins with its largest entry, then by Theorem 6.3 there is a Janus thread γ1 for which γ = 1	 γ1.
Since |γ1| = |γ| − 1 ≥ 2, we have K(γ) = LK(γ1). By induction, K(γ1) = K(γ1), so K(γ) = K(γ) by
the definition of K.

If γ does not begin with its largest entry, then by Theorem 6.4 there are Janus threads γ1 and γ2 for
which γ = (1⊕c(γ1)⊕1)	1	γ2, where γ1 has nonnegative length. ExaminingK((1⊕c(γ1)⊕1)	1	γ2),
we find K(γ) = UK(γ1)DK(γ2). Now the result follows by induction and the definition of K.

7 Future Directions
This work originated in a larger effort to give a nonrecursive characterization of the snow leopard per-
mutations. For instance, we have made extensive use of the fact that snow leopard permutations preserve
parity, but most permutations which preserve parity are not snow leopard permutations. Similarly, we
noted in the Introduction that snow leopard permutations are anti-Baxter permutations, so they avoid the
vincular patterns 3412 and 2143. Still, most anti-Baxter permutations which preserve parity are not snow
leopard permutations. Caffrey et al. (2015) introduce in their Definition 3.2 a function κ which maps
each permutation to a lattice path consisting of North and East steps, and they show that κ is a bijection
between the set of snow leopard permutations of length 2n− 1 and the set of Catalan paths from (0, 0) to
(n, n). However, there are many other permutations π for which κ(π) is a Catalan path. Indeed, let’s call
a permutation SLP-like whenever it is an anti-Baxter permutation which preserves parity and maps to a
Catalan path under κ. Then in Table 6 we see that most SLP-like permutations are still not snow leopard
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length 1 3 5 7 9
number of SLP-like permutations 1 2 7 32 175

number of snow leopard permutations 1 2 5 14 42

Tab. 6: The number of SLP-like permutations compared with the number of snow leopard permutations.

permutations. Giving a nonrecursive characterization of the snow leopard permutations remains an open
problem. Similarly, it remains an open problem to prove our Conjecture 5.8. Finally, as far as we know no
one has investigated the permutations which are compatible with alternating Baxter permutations, even
though Cori et al. (1986) have shown that the number of alternating Baxter permutations of length 2n
(resp. 2n + 1) is C2

n (resp. CnCn+1). We conjecture that the compatibility relation is a bijection in this
case, just as it is in the case of doubly alternating permutations and snow leopard permutations.
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