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Abstract

We describe the recursive structures of the set of two-stack sortable permutations
which avoid 132 and the set of two-stack sortable permutations which contain 132
exactly once. Using these results and standard generating function techniques, we
enumerate two-stack sortable permutations which avoid (or contain exactly once) 132
and which avoid (or contain exactly once) an arbitrary permutation τ . In most cases
the number of such permutations is given by a simple formula involving Fibonacci or
Pell numbers.

Keywords: Two-stack sortable permutation; restricted permutation; pattern-avoiding
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1 Introduction and Notation

In [1] West introduced a stack-sorting function s on the set of finite sequences of distinct posi-
tive integers. This function may be defined recursively by s(∅) = ∅ and s(αnβ) = s(α)s(β)n,
where α and β are sequences and n is the largest element of the sequence αnβ. Let Sn de-
note the set of permutations of {1, 2, . . . , n}, written in one-line notation. West studied
permutations which satisfy st(π) = 12 . . . n, which he called t-stack sortable permutations.
He showed that the one-stack sortable permutations are counted by the well-known Cata-
lan numbers and conjectured that the number of two-stack sortable permutations in Sn is
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(n+1)(2n+1)

(

3n
n

)

. This conjecture was proved analytically by Zeilberger [2] and combinatori-

ally by Dulucq, Gire, and Guibert [3]. More recently, Bóna proved [4] the surprising fact
that if Wt(n, k) is the number of t-stack sortable permutations in Sn with k descents then
Wt(n, k) = Wt(n, n− 1− k).

In this paper we study two-stack sortable permutations from the perspective of pattern-
avoidance. To define pattern-avoiding permutations, suppose π ∈ Sn and σ ∈ Sk. We say
π avoids σ whenever π contains no subsequence with all of the same pairwise comparisons
as σ. For example, the permutation 214538769 avoids 312 and 2413, but it has 2586 as a
subsequence so it does not avoid 1243. In this setting σ is called a pattern or a forbidden
subsequence and π is called a restricted permutation or a pattern-avoiding permutation.

Pattern-avoidance has already been found to be closely connected with stack-sortability.
For instance, West has shown [1, 5] that a permutation is one-stack sortable if and only
if it avoids 231, and that a permutation is 2-stack sortable if and only if it avoids 2341
and 3241, except that the latter pattern is allowed when it is contained in a subsequence
of type 35241. Pattern avoidance has also turned out to be connected with a variety of
other seemingly unrelated areas, including the theory of Kazhdan-Lusztig polynomials [6],
singularities of Schubert varieties [7, 8, 9, 10, 11, 12], Chebyshev polynomials of the second
kind [13, 14, 15], rook polynomials for a rectangular board [16], and various other sorting
algorithms [17, 18, 5, 2].

In this paper we add to the list of topics connected with pattern-avoiding permutations by
describing connections between two-stack sortable permutations and the Fibonacci and Pell
numbers. We begin by describing the recursive structures of the set of two-stack sortable
permutations which avoid 132 and the set of two-stack sortable permutations which con-
tain 132 exactly once. We then combine these results with standard generating function
techniques to enumerate, for various τ ∈ Sk, two-stack sortable permutations which avoid
132 and τ , two-stack sortable permutations which avoid 132 and contain τ exactly once,
two-stack sortable permutations which contain 132 exactly once and avoid τ , and two-stack
sortable permutations which contain 132 and τ exactly once. In most of these cases the
number of such permutations is given by a simple formula involving the Fibonacci or Pell
numbers. For example, we show that the number of two-stack sortable permutations which
avoid 132 is the Pell number pn, the number of two-stack sortable permutations which avoid
132 and 4123 is Fn+4 − 2n − 2, and the number of two-stack sortable permutations which
avoid 132 and contain 51234 exactly once is Fn+2 −

(

n+1
2

)

.
We conclude this section by setting some notation. We write Pn to denote the set of

two-stack sortable permutations in Sn. For any set R of permutations, we write Sn(R) to
denote the set of permutations in Sn which avoid every pattern in R, we write Pn(R) to
denote the set of permutations in Pn which avoid every pattern in R, and we write PR(x) to
denote the generating function given by

PR(x) =

∞
∑

n=0

|Pn(R)|xn.

We write F0, F1, . . . to denote the sequence of Fibonacci numbers, which are given by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. We observe that the generating function for the
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Fibonacci numbers is given by

∞
∑

n=0

Fnx
n =

x

1− x− x2
. (1)

We also observe that Fn may be interpreted combinatorially as the number of tilings of a
1 × (n − 1) rectangle with tiles of size 1 × 1 and 1 × 2. We write p0, p1, . . . to denote the
sequence of Pell numbers, which are given by p0 = 0, p1 = 1, and pn = 2pn−1 + pn−2 for
n ≥ 2. We observe that the generating function for the Pell numbers is given by

∞
∑

n=0

pnx
n =

x

1− 2x− x2
. (2)

We also observe that pn may be interpreted combinatorially as the number of tilings of a
1 × (n − 1) rectangle with tiles of size 1 × 1 and 1 × 2, where each 1 × 1 tile can be red or
blue. For more information on the Pell numbers, see [19], [20, pp. 122–125], [21], and [22].

2 Two-stack Sortable Permutations Which Avoid 132

and Another Pattern

In this section we describe the recursive structure of the set of two-stack sortable permu-
tations which avoid 132. We then use this description to enumerate Pn(132, τ) for various
τ ∈ Pk(132). Throughout we use the fact that since 35241 contains a subsequence of type 132
(namely, 354), for any set R of permutations we have Pn(132, R) = Sn(132, 2341, 3241, R).
We begin with an observation concerning the structure of the permutations in Pn(132).

Proposition 2.1 Fix n ≥ 3 and suppose π ∈ Pn(132). Then the following hold.

(i) π−1(n) = 1, π−1(n) = 2, or π−1(n) = n.

(ii) The map from Pn−1(132) to Pn(132) given by

π 7→ n, π

is a bijection between Pn−1(132) and the set of permutations in Pn(132) which begin
with n.

(iii) The map from Pn−2(132) to Pn(132) given by

π 7→ n− 1, n, π

is a bijection between Pn−2(132) and the set of permutations in Pn(132) whose second
entry is n.

(iv) The map from Pn−1(132) to Pn(132) given by

π 7→ π, n

is a bijection between Pn−1(132) and the set of permutations in Pn(132) which end with
n.
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Proof. (i) Suppose by way of contradiction that 2 < π−1(n) < n. Since π avoids 132, the
elements to the left of n in π are all greater than every element to the right of n. Since
there are at least two elements to the left of n and at least one element to the right of n,
there must be a pattern of type 3241 or 2341 in π in which n plays the role of the 4. This
contradicts our assumption that π ∈ Pn(132).

(ii) Since the given map is clearly injective, it is sufficient to show that π ∈ Pn−1(132)
if and only if n, π ∈ Pn(132). Since Pn(132) = Sn(132, 2341, 3241), it is clear that if n, π ∈
Pn(132) then π ∈ Pn−1(132). To show the converse, suppose π ∈ Pn−1(132). If n, π contains
a pattern of type 132 then the n cannot be involved in the pattern, since it is the largest
element of n, π. Then π contains a pattern of type 132, a contradiction. By similar arguments
for 2341 and 3241 we find that n, π ∈ Pn(132), as desired.

(iii),(iv) These are similar to the proof of (ii). ✷

Theorem 2.2 For all n ≥ 1,
|Pn(132)| = pn. (3)

Proof. For notational convenience, we abbreviate P (x) = P132(x). By Proposition 2.1(i),
when n ≥ 3 the elements of Pn(132) may be partitioned into three sets: those which begin
with n, those whose second entry is n, and those whose last entry is n. By Proposition
2.1(ii), the generating function for those elements which begin with n is x(P (x) − 1 − x).
By Proposition 2.1(iii), the generating function for those elements whose second entry is n
is x2(P (x) − 1). By Proposition 2.1(iv), the generating function for those elements which
end with n is x(P (x)− 1− x). Combine these observations to obtain

P (x) = 1 + x+ 2x2 + x(P (x)− 1− x) + x2(P (x)− 1) + x(P (x)− 1− x).

Solve this equation for P (x) and compare the result with (2) to complete the proof. ✷

We also give a combinatorial proof of (3).

Theorem 2.3 For all n ≥ 1, there exists a constructive bijection between Pn(132) and the
set of tilings of a 1 × (n − 1) rectangle with tiles of size 1 × 1 and 1 × 2, where each 1 × 1
tile can be red or blue.

Proof. Suppose we are given such a tiling; we construct the corresponding permutation as
follows. Proceed from right to left, placing one number in each box of a tile. If the rightmost
empty tile is a 1× 2 tile then fill it with the two smallest remaining numbers, in increasing
order. If the rightmost empty tile is a red 1 × 1 tile then fill it with the largest remaining
number. If the rightmost empty tile is a blue 1×1 tile then fill it with the smallest remaining
number. When all tiles have been filled, one number will remain. Place this number in the
leftmost position in the permutation. To obtain a permutation in Pn(132), take the (group
theoretic) inverse of the permutation constructed by the process above. It is routine to
construct the inverse of the map described above, and thus to verify it is a bijection. ✷

Though elementary, Proposition 2.1 enables us to easily find P132,τ (x) for various τ . For
instance, we have the following result involving τ = 12 . . . d.

Theorem 2.4 (i) P132,1(x) = 1.
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(ii) P132,12(x) =
1

1− x
.

(iii) For all d ≥ 3,

P132,12...d(x) =

(1− x)
d−3
∑

r=0

(1− x− x2)r+1xd−3−r + xd−2

(1− x)(1− x− x2)d−2
. (4)

Proof. (i) Observe that only the empty permutation avoids 1.
(ii) Observe that for all n ≥ 0, the only permutation in Sn which avoids 12 is n, n −

1, . . . , 2, 1.
(iii) We argue by induction on d. By Proposition 2.1(i), for n ≥ 3 the elements of

Pn(132, 12 . . . d) may be partitioned into three sets: those which begin with n, those whose
second entry is n, and those whose last entry is n. Since π avoids 12 . . . d if and only if
n, π does, and if and only if n− 1, n, π does, it follows from Proposition 2.1(ii),(iii) that the
generating functions for the first two sets are x(P132,12...d(x)−1−x) and x2(P132,12...d(x)−1)
respectively. Now observe that a permutation π, n avoids 12 . . . d if and only if π avoids
12 . . . (d− 1). Therefore, in view of Proposition 2.1(iii), the generating function for the last
set is x2(P132,12...(d−1)(x)− 1− x), and we have

P132,12...d(x) =

1 + x+ 2x2 + x(P132,12...d(x)− 1− x) + x2(P132,12...d(x)− 1) + x(P132,12...(d−1)(x)− 1− x).

Solve this equation for P132,12...d(x) to find that for all d ≥ 3,

P132,12...d(x) = 1 +
x

1− x− x2
P132,12...(d−1)(x). (5)

Set d = 3 in (5), use (ii) to eliminate P132,12(x), and simplify the result to obtain

P132,123(x) =
(1− x)(1 − x− x2) + x

(1− x)(1− x− x2)
.

Therefore (4) holds for d = 3. Moreover, if (4) holds for d then it is routine using (5) to
verify that (4) holds for d+ 1. ✷

Corollary 2.5 For all n ≥ 1,

|Pn(132, 123)| = Fn+2 − 1 (6)

and

|Pn(132, 1234)| = 1−
8

5
Fn+1 +

n+ 1

5
(Fn+3 + Fn+1) . (7)
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Proof. To prove (6), first set d = 3 in (4) and simplify the result to obtain

P132,123(x) = 1−
1

1− x
+

x+ 1

1− x− x2
.

Compare this last line with (1) to obtain (6). To prove (7), first set d = 4 in (4) and simplify
the result to obtain

P132,1234(x) = 1 +
1

1− x
−

2

1− x− x2
+

1

(1− x− x2)2
.

It is routine to verify that

1

(1− x− x2)2
=

∞
∑

n=0

((

1

5
n +

1

5

)

Fn +

(

3

5
n+ 1

)

Fn+1

)

xn,

and (7) follows. ✷

Next we consider P132,d12...(d−1)(x).

Theorem 2.6 (i) P132,21(x) =
1

1− x
.

(ii) P132,312(x) =
(1− x− x2)(1− x) + x(1 + x)

(1− x)2
.

(iii) For all d ≥ 4,

P132,d12...(d−1)(x) =

(1− x)(1− x− x2)d−2 + (1− x2)
d−4
∑

r=0

(1− x− x2)r+1xd−3−r + xd−2(1 + x)

(1− x)2(1− x− x2)d−3
. (8)

Proof. (i) Observe that for all n ≥ 0, the only permutation in Sn which avoids 12 is
1, 2, . . . , n− 1, n.

(ii),(iii) Using Proposition 2.1, we find that for all d ≥ 3,

P132,d12...(d−1)(x)

= 1 + x+ 2x2 + x(P132,12...(d−1)(x)− 1− x) + x2(P132,12...(d−1)(x)− 1)

+x(P132,d12...(d−1)(x)− 1− x).

Solve this equation for P132,d12...(d−1)(x) and use Theorem 2.4(ii),(iii) to eliminate the factor
P132,12...(d−1)(x), obtaining (8). ✷

Corollary 2.7 We have

|Pn(132, 312)| = 2n− 2 (n ≥ 2) (9)

and
|Pn(132, 4123)| = Fn+4 − 2n− 2 (n ≥ 0). (10)
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Proof. To prove (9), first observe from Theorem 2.6(ii) that

P132,312(x) = 3 + x+
2

(1− x)2
−

4

1− x
.

Now (9) follows from the binomial theorem.
The proof of (10) is similar to the proof of (9). ✷

We conclude this section by describing a recursive method for computing P132,τ (x) for
any permutation τ ∈ Pk(132). Observe that this allows us to compute P132,τ (x) for any
permutation τ ∈ Sk, since P132,τ (x) = P132(x) if τ ∈ Sk and τ 6∈ Pk(132).

Theorem 2.8 Fix k ≥ 3 and τ ∈ Pk(132). Observe by Proposition 2.1 that exactly one of
the following holds.

(a) There exists τ ′ ∈ Pk−1(132) such that τ = k, τ ′.

(b) There exists τ ′ ∈ Pk−2(132) such that τ = k − 1, k, τ ′.

(c) There exists τ ′ ∈ Pk−1(132) such that τ = τ ′, k.

Then the following also hold.

(i) If (a) holds then

P132,τ (x) =
1− x− x2 + x(1 + x)P132,τ ′(x)

1− x
. (11)

(ii) If (b) holds then

P132,τ (x) =
1− x− x2 + x2P132,τ ′(x)

1− 2x
. (12)

(iii) If (c) holds then

P132,τ (x) = 1 +
xP132,τ ′(x)

1− x− x2
. (13)

Proof. The proofs of (i)–(iii) are similar to the proofs of Theorem 2.4(iii) and 2.6(iii). ✷

Corollary 2.9 We have

|Pn(132, 3412)| = 3 · 2n−2 − 1 (n ≥ 2), (14)

|Pn(132, 45123)| = 3 · 2n−1 − Fn+3 + 1 (n ≥ 1), (15)

and

|Pn(132, 561234)| = 3 · 2n − 1−
6

5
Fn+1 −

n+ 1

5
(Fn+4 + Fn+2) (n ≥ 1). (16)

Proof. To prove (14), first use Theorems 2.8(ii) and 2.4(ii) to find that

P132,3412(x) =
5

4
+

1

2
x−

1

1− x
+

3

4

1

1− 2x
.

Now (14) is immediate.
The proofs of (15) and (16) are similar to the proof of (14). ✷
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Proposition 2.10 For all d ≥ 2,

P132,d...21(x) =

(1− x− x2)
d−3
∑

i=0

xi(1 + x)i(1− x)d−i−2 + xd−2(1 + x)d−2

(1− x)d−1
. (17)

Proof. We argue by induction on d. When d = 2, line (17) reduces to Theorem 2.6(ii). If
(17) holds for a given d ≥ 2 then it is routine using Theorem 2.8(i) to show that (17) holds
for d+ 1. ✷

Corollary 2.11 We have

|Pn(132, 321)| = 2n− 2 (n ≥ 2), (18)

|Pn(132, 4321)| = 2n2 − 8n+ 11 (n ≥ 3), (19)

and

|Pn(132, 54321)| =
4

3
n3 − 12n2 +

128

3
n− 52 (n ≥ 4). (20)

Proof. To prove (18), first set d = 3 in (17) and simplify the result to find

P132,321(x) = 3 + x−
4

1− x
+

2

(1− x)2
.

Now (18) follows from the binomial theorem.
The proofs of (19) and (20) are similar to the proof of (18). ✷

3 Two-stack Sortable Permutations Which Avoid 132

and Contain Another Pattern

Fix d ≥ 1 and set
P(132) =

⋃

n≥0

Pn(132).

Inspired by results such as those found in [23], in this section we study the generating
function for permutations in P(132) according to the number of patterns of type 12 . . . d,
d 12 . . . d− 1, or d d− 1 . . . 21 they contain. We begin by setting some notation.

Definition 3.1 For any permutation τ ∈ Pk(132) and any r ≥ 1, let bn,r denote the number
of permutations in Pn(132) which contain exactly r subsequences of type τ . Then we write

Br
τ (x) =

∞
∑

n=0

bn,rx
n. (21)

We now consider the case in which τ = 12 . . . d.

Definition 3.2 For any permutation π and any d ≥ 1, we write 12 . . . d(π) to denote the
number of subsequences of type 12 . . . d in π and we write |π| to denote the length of π.
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Theorem 3.3 Let x1, x2, . . . denote indeterminates. Then we have

∑

π∈P(132)

∏

d≥1

x
12...d(π)
d = 1 +

∑

n≥1

∏

j≥1

x
(nj)
j

n
∏

m=1

(

1−
∏

j≥1

x
(m−1

j−1 )
j −

∏

j≥1

x
2(m−1

j−1 )
j x

(m−1

j−1 )
j+1

) . (22)

Proof. For notational convenience, set

A(x1, x2, . . .) =
∑

π∈P(132)

∏

d≥1

x
12...d(π)
d .

Using Proposition 2.1 we find that

A(x1, x2, . . .) = 1 + x1 + x2
1x2 + x2

1 + x1 (A(x1, x2, . . .)− 1− x1)

+ x2
1x2 (A(x1, x2, . . .)− 1) + x1 (A(x1x2, x2x3, . . .)− 1− x1x2)

Solve this equation for A(x1, x2, . . .) to obtain

A(x1, x2, . . .) = 1 +
x1A(x1x2, x2x3, . . .)

1− x1 − x2
1x2

.

Iterate this recurrence relation to obtain (22). ✷

For a given d ≥ 1, we can use (22) to obtain the generating function for P(132) according
to length and number of subsequences of type 12 . . . d.

Proposition 3.4 For all d ≥ 3,

B1
12...d(x) =

xd

(1− x)2(1− x− x2)d−2
. (23)

Proof. In (22), set x1 = x, xd = y, and xi = 1 for i 6= 1, d. Expand the resulting expression
in powers of y; we wish to find the coefficient of y. Observe that only the terms in the sum
for which n = d− 1 or n = d contribute to this coefficient. These terms are

xd−1

(1− x− x2)d−2(1− x− x2y)

and
xdy

(1− x− x2)d−2(1− x− x2y)(1− xy − x2y2)

respectively, and (23) follows. ✷

Corollary 3.5 For all n ≥ 0, the number of permutations in Pn(132) which contain exactly
one subsequence of type 123 is Fn+2 − n− 1.
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Proof. Set d = 3 in (23) and simplify the result to find

B1
123(x) =

x+ 1

1− x− x2
−

1

(1− x)2
.

Now the result follows from (1) and the binomial theorem. ✷

As another application of (22), we now find the generating function for P(132) according
to length and number of right to left maxima. To do this, we first find the number of right
to left maxima in a given permutation π in terms of 12 . . . d(π).

Definition 3.6 For any π ∈ Sn, we write rmax(π) to denote the number of right to left
maxima in π.

Proposition 3.7 For all π ∈ Sn(132), we have

rmax(π) =

n
∑

d=1

(−1)d+112 . . . d(π). (24)

Proof. Fix π ∈ Sn(132) and fix i, 1 ≤ i ≤ n. We consider the contribution of those
increasing subsequences of π which begin at π(i) to the sum on the right side of (24). If
π(i) is a right to left maxima, then the only increasing subsequence which begins at π(i) has
length one. Therefore each right to left maxima contributes one to the sum. If π(i) is not a
right to left maxima then we observe that because π avoids 132, the elements to the right of
π(i) which are larger than π(i) are in increasing order. Therefore the contribution of π(i) to
the sum is

k
∑

i=0

(−1)i
(

k

i

)

= 0,

where k is the number of elements in π larger than π(i) to the right of π(i). Combine these
observations to obtain (24). ✷

Proposition 3.8 We have

∑

π∈P(132)

x|π|yrmax(π) = 1 +
xy(1− x− x2)

(1− xy − x2y)(1− 2x− x2)
. (25)

Proof. In (22), set x1 = xy and xi = y(−1)i+1

for i ≥ 2. Use the facts

n
∑

i=0

(−1)i
(

n

i

)

= δn1

and
∞
∑

n=1

xn

(1− x− x2)n−1
=

x(1− x− x2)

1− 2x− x2

to simplify the result. ✷
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Corollary 3.9 For all r ≥ 1, let ar,n denote the number of permutations in Pn(132) with
exactly r right to left maxima. Then

∞
∑

n=0

ar,nx
n =

xr(1 + x)r−1(1− x− x2)

1− 2x− x2
. (26)

In particular,
a1,n = pn−1 (n ≥ 2), (27)

a2,n = pn−2 + pn−3 (n ≥ 4), (28)

and
a3,n = 2pn−3 (n ≥ 6). (29)

Proof. To obtain (26), first observe that

1

1− xy − x2y
=

∞
∑

n=0

xn(x+ 1)nyn.

Combine this with (25) to find that

∑

π∈P(132)

x|π|yrmax(π) =
x(1− x− x2)

1− 2x− x2

∞
∑

n=0

xnyn+1(1 + x)n.

Take the coefficient of yr in this last line to obtain (26).
To obtain (27), set r = 1 in (26) and compare the result with (2).
The proofs of (28) and (29) are similar to the proof of (27). ✷

We remark that (27) and (28) can also be obtained directly from Proposition 2.1 and
Theorem 2.2. For instance, if π ∈ Pn(132) has exactly one right to left maxima then it must
end in n. By Proposition 2.1(iii) and Theorem 2.2, there are exactly pn−1 such permutations
in Pn(132), and (27) follows. A similar but slightly more involved argument proves (28).

Next we find B1
d12...d−1(x).

Theorem 3.10 (i)

B1
312(x) =

x3

(1− x)2
(30)

(ii) For all d ≥ 4,

B1
d12...d−1(x) =

xd

(1− x)3(1− x− x2)d−4
. (31)

Proof. (i) Fix π ∈ Pn(132) such that π contains exactly one subsequence of type 312. We
consider the three cases of Proposition 2.1. If π(1) = n then n ≥ 3 and π = n, n − 2, n −
1, n − 3, n − 4, . . . , 2, 1. If π(2) = n and π(1) = n − 1 then π does not contain exactly
one subsequence of type 312. If π = π′, n then π′ ∈ Pn−1(132) and π′ contains exactly one
subsequence of type 312. Combine these observations to find

B1
312(x) =

x3

(1− x)
+ xB1

312(x).

11



Solve this equation for B1
312(x) to obtain (30).

(ii) Fix π ∈ Pn(132) such that π contains exactly one subsequence of type d12 . . . (d−1).
We consider the three cases of Proposition 2.1. If π(1) = n then π(n) = n−1, since π avoids
132, 2341, and contains exactly one subsequence of type d12 . . . (d−1). Moreover, it is routine
to show that the map π′ 7→ n, π′, n−1 is a bijection between those permutations in Pn−2(132)
which contain exactly one subsequence of type 12 . . . (d − 2) and those permutations in
Pn(132) which contain exactly one subsequence of type d12 . . . (d − 1). If π(2) = n and
π(1) = n − 1 then π does not contain exactly one subsequence of type d12 . . . (d − 1). If
π(n) = n then π = π′, n, where π′ ∈ Pn−1(132) and π′ contains exactly one subsequence of
type d12 . . . (d− 1). Combine these observations to find

B1
d12...(d−1)(x) = x2B1

12...(d−2)(x) + xB1
d12...(d−1)(x).

Now use (23) to eliminate B1
12...(d−2)(x) and solve for B1

d12...(d−1)(x) to obtain (31). ✷

Corollary 3.11 For all n ≥ 1, the number of permutations in Pn(132) which contain exactly
one subsequence of type 51234 is

Fn+2 −

(

n+ 1

2

)

.

Proof. Set d = 5 in (31) and simplify the result to find

B1
51234(x) =

x+ 1

1− x− x2
−

3

1− x
+

2

(1− x)2
−

1

(1− x)3
.

Now the result follows from (1) and the binomial theorem. ✷

We conclude this section by finding B1
d...21(x).

Theorem 3.12 For all d ≥ 1,

B1
d...21(x) =

xd

(1− x)d−1
. (32)

Proof. This is similar to the proof of Theorem 3.10. ✷

4 Two-stack Sortable PermutationsWhich Contain 132

Exactly Once

We now turn our attention to the set of permutations in Pn which contain 132 exactly once.

Definition 4.1 For all n ≥ 0, we write Qn to denote the set of permutations in Pn which
contain exactly one subsequence of type 132.

Using the methods of the previous section, one can obtain generating functions for those
permutations in Qn which avoid, or contain exactly once, any permutation τ ∈ Sk. In
this section we illustrate these derivations with examples in which the resulting generating
functions are given in terms of the generating functions for the Pell or Fibonacci numbers.
We begin with an analogue of Proposition 2.1.
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Proposition 4.2 Fix n ≥ 3 and suppose π ∈ Qn. Then the following hold.

(i) π(1) = n, π(2) = n, π(n) = n, or π = 3142.

(ii) The map from Qn−1 to Qn given by

π 7→ n, π

is a bijection between Qn−1 and the set of permutations in Qn which begin with n.

(iii) The map from Qn−2 to Qn given by

π 7→ n− 1, n, π

is a bijection between Qn−2 and the set of permutations in Qn whose second entry is n
and in which n is not an element of the subsequence of type 132.

(iv) The map from Qn−1 to Qn given by

π 7→ π, n

is a bijection between Qn−1 and the set of permutations in Qn which end with n.

(v) The map from Pn−2 to Qn given by

π 7→ n− 2, n, π′,

where π′ is the permutation of 1, 2, . . . , n − 3, n − 1 obtained by replacing n − 2 with
n−1 in π, is a bijection between Pn−2 and the set of permutations in Qn whose second
entry is n and in which n is an element of the subsequence of type 132.

Proof. (i) Suppose 2 < π−1(n) < n. We consider two cases: n is an element of the
subsequence of type 132 or n is not an element of the subsequence of type 132.

If n is not an element of the subsequence of type 132 then the elements to the left of n are
all greater than every element to the right of n. Since there are at least two elements to the
left of n and at least one element to the right of n, there must be a pattern of type 3241 or
2341 in which n plays the role of the 4. This contradicts our assumption that π ∈ Qn ⊆ Pn.

Now suppose the subsequence of type 132 in π is a, n, b. Since π contains no other
subsequence of type 132, all elements to the left of n other than a are greater than b and all
elements to the right of n other than b are less than a. Observe that if there are additional
elements both to the right and left of n then one of these elements on each side of n, together
with a and n, form a pattern of type 2341 or 3241. Therefore, there can only be additional
elements on one side of n. Since we have assumed 2 < π−1(n) < n, there must be at least
one additional element to the left of n and no additional elements to the right of n. If there
are two (or more) additional elements to the left of n then they combine with n and b to
form a 3241 or a 2341 pattern, so there must be exactly one additional element to the left
of n. Now the only possibilities are π = 3142 and π = 1342. But 1342 has more than one
subsequence of type 132, so we must have π = 3142, as desired.

(ii)–(v) These are similar to the proof of Proposition 2.1(ii). ✷

Using Proposition 4.2, we now find the generating function for Qn.

13



Theorem 4.3 We have

∞
∑

n=0

|Qn|xn =
x3(1 + x− 2x2 − x3)

(1− 2x− x2)2
. (33)

Moreover,

|Qn| =
1

4
(51npn − 145pn − 21npn+1 + 60pn+1) (n ≥ 3). (34)

Proof. For notational convenience, set

Q(x) =

∞
∑

n=0

|Qn|x
n.

To obtain (33), observe that by Proposition 4.2 we have

Q(x) = 2xQ(x) + x2Q(x) + x2P132(x) + x4.

Use (3) and (2) to eliminate P132(x) and solve the resulting equation for Q(x) to obtain (33).
To obtain (34), first observe that

Q(x) = −x2 + 4x− 15 +
87x− 36

(1− 2x− x2)2
−

49x− 51

1− 2x− x2
.

Now observe that

1

(1− 2x− x2)2
=

∞
∑

n=0

1

4
((n + 1)pn + (3n+ 4)pn+1) x

n.

Combine these observations with (2) to obtain (34). ✷

Proposition 4.2 enables us to find the generating function for those permutations in Qn

which avoid, or contain exactly once, any permutation τ . We illustrate how this is done by
considering those permutations in which τ = 12 . . . d appears exactly once.

Definition 4.4 For any permutation τ ∈ Sk, let cn denote the number of permutations in
Qn which contain exactly one subsequence of type τ . We write D1

τ (x) to denote the generating
function given by

D1
τ (x) =

∞
∑

n=0

cnx
n.

Theorem 4.5 For all d ≥ 2,

D1
12...d(x) =

(d− 2)xd+2

(1− x)2(1− x− x2)d−1
. (35)

Proof. The case d = 2 is immediate, so we assume d > 2 and argue by induction on d. By
Proposition 4.2, we find

D1
12...d(x) = xD1

12...d(x) + x2D1
12...d(x) + xD1

12...(d−1)(x) + x2B1
12...d(x).
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Use (23) to eliminate B1
12...d(x) and solve the resulting equation for D1

12...d(x), obtaining

D1
12...d(x) =

1

1− x− x2

(

xD1
12...(d−1)(x) +

xd+2

(1− x)2(1− x− x2)d−2

)

.

Use induction to eliminate D1
12...(d−1)(x) and (35) follows. ✷

Corollary 4.6 The number of permutations in Qn which contain exactly one subsequence
of type 123 is

n

5
(Fn+1 + Fn−1)−

2

5
(5Fn+1 − Fn−1) + n + 2 (n ≥ 4).

Proof. This is similar to the proof of (7). ✷

5 Directions for Future Work

In this section we present several directions in which this work may be generalized, using
similar techniques.

1. In Section 2 we enumerated two-stack sortable permutations which avoid 132 and one
additional pattern. Using the same techniques, one ought to be able to enumerate two-
stack sortable permutations which avoid 132 and two or more additional patterns. For
instance, for any d ≥ 2, it should be possible using our techniques to find the generating
function P132,123...d,213...d(x). Moreover, we expect that this generating function will be
given in terms of the generating function for the Fibonacci numbers.

2. In Section 3 we found generating functions for two-stack sortable permutations with
respect to various statistics on permutations. Using similar techniques, one ought to
be able to find generating functions for two-stack sortable permutations with respect to
additional statistics, such as rises, descents, right to left maxima, right to left minima,
left to right maxima, and left to right minima.

3. In Section 4 we enumerated two-stack sortable permutations which contain exactly
one subsequence of type 132 and avoid (or contain exactly once) another pattern. One
ought to be able to use similar techniques to enumerate permutations which contain
exactly r subsequences of type 132, for a given r.
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