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Abstract

In 1993 Bonin, Shapiro, and Simion showed that the Schr¨oder numbers count
certain kinds of lattice paths; these paths are now called Schr¨oder paths. In 1995
West showed that the Schr¨oder numbers also count permutations which avoid the
patterns 4231 and 4132. Using some technical machinery, Barcucci, Del Lungo,
Pergola, and Pinzani showed in 1999 that a certainq-analog of the Schr¨oder num-
bers, called the Schr¨oder polynomial, is the generating function for a statistic called
the area statistic on Schr¨oder paths and is also the generating function for the inver-
sion number on permutations which avoid 4231 and 4132. In this paper we give a
constructive bijection from Schr¨oder paths to permutations which avoid 4231 and
4132 that takes the area statistic on Schr¨oder paths to the inversion number on per-
mutations which avoid 4231 and 4132.

Keywords: Schröder paths, Schröder permutations, Schröder polynomials, Catalan
polynomials, pattern-avoiding permutations, lattice paths, inversion number
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1. Introduction

The Catalan numbersC0,C1, . . . are given in closed form byCn = 1
n+1

(2n
n

)
, but they may

also be defined by the recurrence
C0 = 1,

Cn =
n

∑
k=1

Ck−1Cn−k (n ≥ 1).

It is well known thatCn is the number of lattice paths from(0,0) to (n,n) using only
NORTH(0,1) and EAST(1,0) steps which never pass below the liney = x. We refer to
these paths as Dyck paths. It is also well known thatCn is the number of permutations
of 1,2, . . . ,n which avoid the pattern 312. (See section 2 for definitions.) In [5] Carlitz
and Riordan introduced aq-analogCn(q) of Cn which satisfies

C0(q) = 1,

Cn(q) =
n

∑
k=1

Ck−1(q)Cn−k(q)qk−1 (n ≥ 1).

Observe thatCn(1) = Cn for n ≥ 0. In [6] Fürlinger and Hofbauer showed thatCn(q) is
the generating function for the area statistic on Dyck paths and for the inversion number
on 312-avoiding permutations. In [1] Bandlow and Killpatrick provided a combinatorial
proof of this result by giving a constructive bijection from Dyck paths to 312-avoiding
permutations which takes the area statistic to the inversion number.

In [8] Garsia and Haiman generalizedCn(q) by introducing a polynomialCn(q, t)
such thatCn(1,1) = Cn andCn(1,q) = Cn(q,1) = Cn(q); this polynomial is now called
theq, t-Catalan polynomial. Garsia and Haiman conjectured thatCn(q, t) is the Hilbert
series of the diagonal harmonic alternates and showed that it is the coefficient of the
elementary symmetric functionen in the symmetric polynomialDHn(x;q, t), the con-
jectured Frobenius characteristic of the module of diagonal harmonic polynomials. It
is immediate from Garsia and Haiman’s definition thatCn(q, t) = Cn(t,q). Moreover,
Haglund [9] has found a statistic on Dyck paths, called thet-statistic, such thatCn(q, t)
is the generating function for the area andt-statistics on Dyck paths. One important
open problem is to find an involution on Dyck paths which takes the area statistic to the
t-statistic and thet-statistic to the area statistic.

Closely related to the Catalan numbers are the Schröder numbersR0,R1, . . ., which
are defined by the recurrence

R0 = 1,

Rn+1 = Rn +
n+1

∑
k=1

Rk−1Rn+1−k (n ≥ 0).

(No simple closed form forRn is known.) In [3] Bonin, Shapiro, and Simion showed
that Rn is the number of lattice paths from(0,0) to (n,n) using only NORTH(0,1),
EAST (1,0), and DIAGONAL (1,1) steps which never pass below the liney = x. We
refer to these paths as Schröder paths. In [13] West showed thatRn is also the num-
ber of permutations of 1,2, . . . ,n,n + 1 which avoid the patterns 4231 and 4132. We
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refer to these permutations as Schröder permutations. (For other families of pattern-
avoiding permutations counted by the Schröder numbers, see [10].) Theq-analogs of
the Schröder numbers, called the Schröder polynomials, are defined by the recurrence

S0(q) = 1,

Sn+1(q) = Sn(q)+
n+1

∑
k=1

Sk−1(q)Sn+1−k(q)qk (n ≥ 0).

ObserveSn(1) = Rn for n ≥ 0. In [2] Barcucci, Del Lungo, Pergola, and Pinzani used
some technical machinery to show thatSn(q) is the generating function for a generalized
area statistic on Schröder paths and for the inversion number on Schröder permutations.

The Schröder numbers and Catalan numbers are related by

Rn =
n

∑
k=0

(
2n− k

k

)
Cn−k (n ≥ 0).

Moreover, observe that every Dyck path is a Schröder path and that every permutation
which avoids 312 also avoids 4231 and 4132. So if we viewSn(q) as a sum over
Schröder paths then we obtain (a multiple of)Cn(q) by restricting the sum to Dyck
paths. Similarly, if we viewSn(q) as a sum over Schröder permutations then we obtain
(a multiple of)Cn+1(q) by restricting the sum to 312-avoiding permutations.

Our main goal is to find a symmetricq, t-Schröder polynomial which generalizes
Cn(q, t). Recently Egge, Haglund, Killpatrick, and Kremer have found aq, t-Schröder
polynomial which generalizesCn(q, t), but it is not known whether this polynomial is
symmetric. In this paper we advance on our goal by extending properties ofCn(q) to
Sn(q). Specifically, we generalize the work of Bandlow and Killpatrick by giving a
constructive bijection from Schröder paths to Schröder permutations which takes the
area statistic to the inversion number.

In section 2 we give the necessary definitions and background for this paper. In
section 3 we construct a bijection between Schröder paths and Schröder permutations
and prove that this bijection maps the area statistic to the inversion number. In section
4 we discuss some open problems related to this work.

2. Schröder Numbers and Polynomials

The Schröder numbersR0,R1, . . . are defined by the recurrence

R0 = 1,

Rn+1 = Rn +
n+1

∑
k=1

Rk−1Rn+1−k (n ≥ 0) (2.1)

and form the sequence
{Rn}∞

n=0 = {1,2,6,22, . . .}.

A Schröder path is a lattice path inZ2 from (0,0) to (n,n) consisting of steps in
the (0,1) direction (NORTH steps), the(1,0) direction (EAST steps) and the(1,1)
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direction (DIAGONAL steps) such that there are no points(x,y) on the path for which
x > y. In other words, a Schröder path is a path from(0,0) to (n,n) consisting only of
NORTH, EAST and DIAGONAL steps that never goes below the diagonal. We write
Pn to denote the set of Schröder paths from(0,0) to (n,n). For example,P2 consists of
the paths illustrated below.

The Schröder numberRn is known to count Schröder paths from(0,0) to (n,n), thus
R2 = 6. Thelength of a Schröder path is the number of NORTH and DIAGONAL steps
in the path, thus a Schröder pathπ∈ Pn has lengthn. Schröder paths which contain
no DIAGONAL steps are calledDyck paths and the number of such paths is given by
the Catalan numberCn = 1

n+1

(2n
n

)
. The Schröder numbers are related to the Catalan

numbers by

Rn =
n

∑
k=0

(
2n− k

k

)
Cn−k (n ≥ 0).

This relation can be explained by counting Schröder paths according to how many
DIAGONAL steps they contain. Specifically, for 0≤ k ≤ n let Dk denote the set of
Schröder paths from(0,0) to (n,n) which contain exactlyk DIAGONAL steps. Clearly
Rn = ∑n

k=0 |Dk|, so it is sufficient to show|Dk| =
(2n−k

k

)
Cn−k. To do this, observe that

if a Schröder path hask DIAGONAL steps then it has a total of 2n−k steps. To form a
Schröder path withk DIAGONAL steps, first choose which of the 2n− k steps will be
diagonal. This can be done in

(2n−k
k

)
ways. Then fill in the remaining steps with a Dyck

path of lengthn−k, which can be done inCn−k ways. It follows that|Dk|=
(2n−k

k

)
Cn−k,

as desired.
Both the Schröder numbers and the Catalan numbers have many other combinatorial

interpretations. See [12, Exercise 6.19, p. 219] for an extensive list of combinatorial
interpretations of the Catalan numbers. See [12, Exercise 6.39, p. 239] for an extensive
list of combinatorial interpretations of the Schröder numbers.

The recurrence (2.1) satisfied by the Schröder number can also be visualized using
the Schröder paths. Fork ≥ 2, let

Ak = {Schröder paths from(0,0) to (n +1,n +1) that first touchy = x at (k,k)}.

In other words, fork ≥ 2, the setAk consists of those Schröder paths for whichk is the
smallest positive integer such that(k,k) is a point on the path. In addition, letA1 be the
set of paths that start with a NORTH step and then an EAST step and letA′

1 be the set
of paths that start with a DIAGONAL step. Then clearlyRn+1 = |A′

1|+ ∑n+1
k=1 |Ak|. It

remains to show that|Ak| = Rk−1Rn+1−k and|A′
1| = Rn.

If a path first touches the diagonal at(k,k) then it must go from(0,1) to (k−1,k)
without touching the diagonal points(1,1), (2,2), . . . , (k− 1,k− 1). The number of
such paths isRk−1. Once the path touches(k,k) it must then continue to(n +1,n +1)
without going below or to the right of the diagonal. The number of such paths isRn+1−k.
Thus for k ≥ 2 we have|Ak| = Rk−1Rn+1−k. Paths inA1 start with a NORTH step
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followed by an EAST step and then can take any valid path from(1,1) to (n+1,n+1).
The number of such paths isRn. (Note:Rn = R0Rn sinceR0 = 1.) Paths inA′

1 start with
a DIAGONAL step and then can take any valid path from(1,1) to (n+1,n+1). Again
there areRn ways to do this so|A′

1| = Rn. Therefore,

Rn+1 = |A′
1|+

n+1

∑
k=1

|Ak| = Rn +
n+1

∑
k=1

Rk−1Rn+1−k.

For example, ifn = 9 andk = 3, then any path inA3 must go from(0,0) to (0,1), then
take some path from(0,1) to (2,3) without touching(1,1) or (2,2). Since the chosen
path is inA3, it must then go from(2,3) to (3,3) and then it can take any valid Schröder
path from(3,3) to (10,10). One example of such a path is illustrated below.

The Schröder numbers also count certain kinds of pattern-avoiding permutations. A
4132-avoiding permutationπ∈ Sn is a permutationπ= π1π2 · · ·πn containing no subse-
quenceπiπjπkπl with i < j < k < l such thatπi > πk > πl > πj. That is, we sayπavoids
4132 whenever it contains no subsequence whose elements are in the same relative or-
der as 4132. A4231-avoiding permutation is defined similarly. ASchröder permutation
is a permutation that is both 4132- and 4231-avoiding. The Schröder numberRn counts
the Schröder permutations inSn+1 [2]. (See [10] for other sets of pattern-avoiding per-
mutations counted by the Schröder numbers.)

A statistic on a permutation, lattice path, or other combinatorial object counts some
property about that object. Theinversion statistic (or inversion number) of a permuta-
tion σ ∈ Sn is defined by

inv(σ) = ∑
1≤i< j≤n

σi>σ j

1.

For example, ifσ = 743216598, theninv(σ) = 14 since each of the pairs 21, 31, 41,
71, 32, 42, 72, 43, 73, 74, 65, 75, 76, and 98 contributes 1 to the sum. The generating
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function for the inversion statistic onSn is given by

∑
σ∈Sn

qinv(σ).

In addition to defining statistics on permutations, we can define statistics on Schröder
paths. Given a Schröder pathπ∈ Pn, the area statistic,a(π), is the number of full
squares and upper half-squares that lie below the path and completely above the diag-
onal. For example, for the Schröder path shown below the squares counted by the area
statistic are shaded, giving an area statistic of 21.

The generating function for the area statistic on Schröder paths is given by

∑
π∈Pn

qa(π) = Sn(q),

and is known as the Schröder polynomial [3]. Specializingq = 1 in the Schröder poly-
nomial gives the usual Schröder numberRn while restricting the sum to paths using only
NORTH and EAST steps (Dyck paths) gives a multiple of theq-Catalan polynomial.
Barcucci, Del Lungo, Pergola, and Pinzani [2] showed that

Sn+1(q) = Sn(q)+
n+1

∑
k=1

Sk−1(q)Sn+1−k(q)qk (n ≥ 0). (2.2)

To visualize this recurrence, use notation similar to our explanation of the recur-
rence for the Schröder numbers. That is, fork ≥ 2, let Ak denote the set of Schröder
paths for whichk is the smallest positive integer such that(k,k) is a point on the path.
In addition, letA1 denote the set of paths that start with a NORTH step and then an
EAST step and letA′

1 denote the set of paths that start with a DIAGONAL step. For
1≤ k ≤ n +1, let

Ak(q) = ∑
π∈Ak

qa(π)

and
A′

1(q) = ∑
π∈A′

1

qa(π).
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Clearly,

Sn+1(q) = A′
1(q)+

n+1

∑
k=1

Ak(q).

Then to understand the Schröder recurrence in (2.2), it is necessary to understand why

Ak(q) = Sk−1(q)Sn+1−k(q)qk

and why
A′

1(q) = Sn(q).

Since a path inAk first touches the diagonal at(k,k) it must go from(0,1) to (k−1,k)
without touching the diagonal points(1,1), (2,2), . . . , (k− 1,k− 1). The number of
such paths isRk and the sum of their weights isSk(q). To these paths we must add
the k half-squares just above the diagonal from(0,0) to (k,k). Thus the parts of the
paths from(0,0) to (k,k) in Ak give us a weight ofqkSk(q). From(k,k) the paths must
continue on to(n+1,n+1) without going below the diagonal. These paths have weight
Sn+1−k(q), giving a total weight for paths inAk of

Ak(q) = qkSk−1(q)Sn+1−k(q).

Any path inA′
1 starts with a DIAGONAL step, which has a weight of zero, and then

continues on from(1,1) to (n+1,n+1), so the total weight of these paths is justSn(q).
Thus

Sn+1(q) = Sn(q)+
n+1

∑
k=1

qkSk−1(q)Sn+1−k(q).

Using the previous example of a path inA3, the additional 3 half squares of weight
q3 are shaded in black in the diagram below.
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3. A Bijection Between Schröder Paths and Schröder Per-
mutations

Before stating and proving our main theorem, we will describe a well-defined method
for writing any permutationσ ∈ Sn as a product of adjacent transpositions which will
prove useful.

Let σ ∈ Sn and letsi denote the transposition that interchanges the number in po-
sition i with the number in positioni + 1 when applied toσ. Write σ as a product of
adjacent transpositionssi by first determining a specific sequence of adjacent transpo-
sitions which, when applied toσ, will give the identity permutation. Thenσ can be
represented by the inverse of this sequence of transpositions.

To determine the specific sequence of adjacent transpositions, supposen is in po-
sition i in σ. Thensn−1sn−2 · · · si+1si (applied right to left) moves then to positionn
and leaves the relative order of the numbers 1 throughn− 1 unchanged. Now locate
n−1 in the resulting permutation. Supposen−1 is in position j. Then the sequence
sn−2sn−3 · · · s j+1s j moves then−1 to positionn− 1. Continuing in this manner will
give the identity permutation. Thenσ can be represented as the inverse of this sequence
of transpositions. Sinces2

i = id, it follows thats−1
i = si so the inverse of this sequence

of transpositions is the same sequence written in reverse order. Thusσ is represented
by a product of adjacent transpositionssi whose subscripts form a series of increasing
subsequences, i.e.,σ = σ1σ2 · · ·σ j with j ≤ n such that eachσi is a product of adjacent
transpositions whose subscripts are strictly increasing. In this representation,j is the
minimum number of such subsequences.

For example, let
σ = 2 3 1 6 8 7 9 5 10 4.

Thens9 moves the 10 to the last position, giving

s9(σ) = 2 3 1 6 8 7 9 5 4 10.

Nexts8s7 moves the 9 to the 9th position,s7s6s5 moves the 8 to the 8th position,s6s5

moves the 7 to the 7th position,s5s4 moves the 6 to the 6th position,s4 moves the 5 to
the 5th position, the 4 is already in the 4th position,s2 moves the 3 to the 3rd position,
ands1 moves the 2 to the 2nd position. Thenσ can be represented as the inverse of this
sequence of transpositions, so

σ = s9 / s7s8 / s5s6s7 / s5s6 / s4s5 / s4 / s2 / s1.

(The symbol/ has been added above only as a delimiter for the sake of readability.)
In this example,σ = σ1σ2 · · ·σ8 whereσ1 = s9, σ2 = s7s8, σ3 = s5s6s7, σ4 = s5s6,
σ5 = s4s5, σ6 = s4, σ7 = s2, andσ8 = s1.

We now use this method of writing a permutation as a product of transpositions to
describe a functionf from Pn to the set of Schröder permutations inSn+1. This function
will turn out to be a bijection which takes the area statistic to the inversion number.

Supposeπ is a path inPn. Then for each lower half-square below the path that lies
at the top of columnj, draw a diagonal arrow from each square in columnj + 1 and
row k to the square in columnj and rowk−1, for eachk > j. For example, ifπ is the
path in the picture below, then draw the diagonal arrows as illustrated.
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Label shaded full squares and upper half-squares on the diagonal with ans j if the square
is in column j. Then letσ1 be the sequence ofsi’s with decreasing subscripts obtained
by reading the top row of squares below the path from right to left, writing ans j for
each shaded square or upper half-square in columnj. If there is a diagonal arrow at the
end of rowk in columni+1, follow the diagonal arrow down to the square in rowk−1
and columni and continue to read the sequence ofsi’s in shaded squares from right
to left. When there are no more squares to the left that lie under the path or no more
diagonal arrows at the end of the row, thenσ1 is complete. Follow the same process
to obtainσ2, starting with the row of shaded squares that lies below the topmost row.
Filling in the example from above with the correctsi’s we obtain the following picture.

From this picture we find thatσ1 = s10s9s8s7, σ2 = s9s8s7s6s5, σ3 = s7s6s5s4, σ4 =
s6s5s4, σ5 = s5s4, σ6 = s2s1 andσ7 = s1.

For eachi, let σ′
i be the sequence ofs j ’s in σi written in reverse order. In the

above example,σ′
1 = s7s8s9s10, σ′

2 = s5s6s7s8s9, σ′
3 = s4s5s6s7, σ′

4 = s4s5s6, σ′
5 = s4s5,

σ′
6 = s1s2 andσ′

7 = s1. We definef (π) ∈ Sn+1 by writing f (π) = σ′
1σ′

2 · · ·σ′
k. In the

example above,f (π) = 3 2 1 8 10 7 11 6 4 5 9.
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Lemma 1. If π is a Schröder path then f (π) is a Schröder permutation.

Proof. We argue by induction onn, the length of the Schröder path. The result is
immediate whenn = 1, since 12 and 21 are both Schröder permutations.

Now assume that ifπ is a Schröder path of lengthn− 1 then f (π) is a Schröder
permutation inSn. Let π̂ be a Schröder path of lengthn. If there are no squares or
upper half-squares under the path in the top row, thenf mapsπ̂ to a permutation with
n+1 in the(n+1)st position. In this case, it is enough to check that the permutation in
positions 1 throughn is a Schröder permutation. By induction, the path from(0,0) to
(n−1,n−1) maps to a permutation inSn that is a Schröder permutation, thus adding
n +1 to the end of the permutation still gives a Schröder permutation.

Suppose there exist squares or upper half-squares under the Schröder pathπ̂ in
row n. Let σ1 = snsn−1 · · · s js j−1 · · · si be the sequence of transpositions obtained when
reading shaded squares from right to left starting with the top row, as in the definition
of f . Removing the squares associated with these transpositions from the Schröder
path leaves a Schröder path of lengthn− 1 which by induction maps to a Schröder
permutation inSn. Let α denote this permutation inSn. It remains to check that
si · · · s j−1s j · · · sn−1sn(α(n+1)) is 4132 and 4231-avoiding, i.e. a Schröder permuta-
tion.

Suppose the permutationα ends in(n-k+1)(n-k+2)· · · (n-1) n andn-k is in position
i in α with i ≤ n− k−1. Then the element in positionn− k of α is a number less than
n− k. With this in mind, we will make use of the following result.

Lemma 2. The permutation si · · ·s j−1s j · · ·sn−1sn(α(n+1)) can fail to be 4132 or 4231
avoiding only if n+1 moves two or more positions to the left of n-k.

Assuming for the moment that Lemma 2 holds, it is enough to show thatn+1 moves
at most one position to the left ofn-k, for n-k defined as above.

Recall thatf (π̂) = si · · · s j−1s j · · · sn−1sn(α(n+1)) for somei. If i ≥ n−k−1, then
si · · · sn can moven+1 at most one position to the left ofn-k, sincen-k is in positionl
in α with l ≤ n−k−1. Thus the resulting permutation is both 4132 and 4231 avoiding
and sof (π̂) is a Schröder permutation.

Supposei < n−k−1 and letn-k be in positionl in α. Since(n-k+1)(n-k+2)· · ·(n-
1)n remain fixed inα, thensn−k+1 . . .sn−1sn correspond to upper half-squares on the
diagonal in the Schröder path andsn−k corresponds to the full square in columnn− k
and rown−k+1 in the Schröder path. The remainingsi . . . sn−k−1 also must correspond
to full squares in the Schröder path. However, each of these full squares must have either
a full square or an upper half-square below it, sinceα corresponds to a Schröder path.
Thusi ≥ l and son+1 can move at most one position pastn−k in f (π̂). Thereforef (π̂)
is a Schröder permutation.

We now give a proof of Lemma 2.

Proof. (of Lemma 2) Suppose. . .n+1 . . . i . . .k . . . j . . . forms a 4132 or 4231 pattern
for somek < n− k. If n-k is to the left ofi, then. . .n−k . . . i . . .k . . . j . . . would have
formed a 4132 or 4231 pattern inα, butα is a Schröder permutation so it avoids these
patterns. Ifn-k is betweeni andj then. . .n+1 . . . i . . .n−k . . . j . . . is a 4132 or a 4231
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pattern. In this case,n+1 is two or more positions to the left ofn-k. If n-k is to the
right of j, then. . .n+1 . . . i . . .n−k . . . l . . . is a 4132 or a 4231 pattern, wherel is the
element in positionn− k so l < n− k. Again in this case,n+1 is two or more positions
to the left ofn-k.

To show f is a bijection, we describe its inverse map. To do this, suppose we are
given a Schröder permutationσ. Use the method described at the beginning of this
section to writeσ as a product of transpositions, obtainingα = σ′

1σ′
2 · · ·σ′

k. Recall that
eachσ′

i is a subsequence of adjacent transpositions with increasing subscripts. For each
i, if σ′

i has lengthl and ends withsm, then shade in the squares ofZ2 in the mth row
and in columnsm throughm− l + 1. For example, if the given Schröder permutation
is σ = 3 4 2 1 8 6 11 10 9 5 7 thenα = s7s8s9s10s7s8s9s7s8s5s6s7s5s2s3s1s2s1 and the
shaded squares are as in the following picture.

To obtain a Schröder path from the diagram, we slide certain of the shaded squares
down, using the following procedure.

(1) Find the right-most column containing an unshaded square or upper half-square
with a shaded square above. Choose the highest such square or half-square in the
column.

(2) Shift all of the shaded squares which are both above and weakly to the left of the
chosen unshaded square or half-square down by one square. If the area chosen
is a half-square, then the chosen half-square becomes shaded and the top shaded
square in its column becomes a shaded lower half-square.

(3) Repeat steps 1 and 2 until there are no unshaded squares or upper half-squares
below a shaded square or half-square.

Once the sliding procedure is complete, we defineg(σ) to be the Schröder path atop
the resulting shaded region. In our example we obtain the path illustrated below.
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The following result concerning the sliding procedure above will be useful.

Lemma 3. Suppose σ is a Schröder permutation. In step 1 of the sliding procedure
above, the unshaded area selected will always be an upper half-square on the diagonal.

Proof. Arguing by contradiction, suppose at some stage the unshaded area chosen is a
square. Then the part of our diagram surrounding this square looks as follows.

If the transpositions corresponding to the top row of this picture aresm−l . . . sm then
the transpositions corresponding to the second row aresm−l+k . . . sm−1 for somek such
that 0< k < l − 1. These two rows of transpositions will produce a pattern of type
m+1 a m b in σ, wherea ≤ m−1 andb ≤ m−1. If a < b then this is a 4132 pattern.
If b < a then this is a 4231 pattern. In either case, we have a contradiction.

Lemma 4. Let f and g be the maps described above. If π is a Schröder path then
g( f (π)) = π. If σ is a Schröder permutation then f (g(σ)) = σ. In particular, g = f−1.

Proof. Supposeσ is a Schröder permutation, and thatσ = σ1 . . .σk when written as
a product of transpositions as previously described, in which eachσi is a product of
transpositions with increasing subscripts. By the first part of the construction ofg(σ),
the stringσi may be written in the shaded squares and upper half-squares in rowi
of the diagram obtained before applying the sliding procedure. By Lemma 3 and the
construction off , these strings are never broken under the sliding procedure involved
in the construction ofg. The result follows.

Lemma 5. Suppose σ is a permutation with k inversions. Then when σ is written as a
product of adjacent transpositions as described then σ has exactly k terms in the prod-
uct. In other words, every transposition in the product representation of σ corresponds
to an inversion in σ.
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Proof. Supposeσ = σ1σ2 · · ·σk when written as a product of transpositions in the man-
ner described, in which eachσi is a product of transpositions with increasing subscripts.
Supposeσi = s js j+1 · · · sl . Then this sequence of transpositions repeatedly interchanges
the position ofl + 1 with the element to the left ofl + 1. By construction the element
to the left ofl +1 is always less thanl +1, so each transposition introduces exactly one
inversion.

Theorem 1. The function f is a bijection from Schröder paths to Schröder permutations
that maps the area statistic to the inversion number.

Proof. It is immediate from Lemma 4 thatf is a bijection. It follows from Lemma 5
and the construction off that f maps a Schröder path with area statistick to a Schröder
permutation with inversion numberk.

4. Open Problems

As yet, no generalization of theq, t-Catalan polynomial to aq, t-Schröder polynomial
Sn(q, t) such thatSn(q,1) = Sn(1,q) = Sn(q) andSn(q, t) = Sn(t,q) is known. However,
Egge, Haglund, Killpatrick, and Kremer have recently found at-statistic that is equidis-
tributed with the area statistic on Schröder paths. In other words, ifSn(q, t) is the gener-
ating function for the area statistic and this newt-statistic on Schröder paths from(0,0)
to (n,n) thenSn(q,1) = Sn(1,q) = Sn(q). It is not known whetherSn(q, t) = Sn(t,q).
The problem of finding an involution on Dyck paths from(0,0) to (n,n) which reverses
the area andt-statistics also remains open.
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