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Abstract

We use the Robinson-Schensted-Knuth correspondence and Schützenberger’s evac-
uation of standard tableaux to enumerate permutations and involutions which are in-
variant under the reverse-complement map and which have no decreasing subsequences
of length k. These enumerations are in terms of numbers of permutations with no de-
creasing subsequences of length approximately k

2 ; we use known results concerning
these quantities to give explicit formulas when k ≤ 6.
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1 Introduction

Let Sn denote the set of permutations of {1, 2, . . . , n}, written in one-line notation, and
suppose π and σ are permutations. We say π contains σ whenever π has a subsequence with
the same length and relative order as σ; otherwise we say π avoids σ. For example, 4257316
avoids 1432, but it has 436 as a subsequence so it contains 213. In this context we sometimes
call π a pattern-avoiding permutation or a restricted permutation, and we sometimes call σ
a pattern or a forbidden pattern.

It is well-known that the symmetry group of a square, which we denote by D4, acts on
permutations in a way that is compatible with pattern avoidance. To describe this action
on a given permutation π ∈ Sn, we first draw the diagram of π, as follows. Begin with an
n×n square, subdivided into n rows of equal height and n columns of equal width. Number
the rows (resp. columns) 1, 2, . . . , n from left to right (resp. bottom to top), and place dots
in the 1 × 1 squares with (row,column) coordinates (1, π(1)), (2, π(2)), . . . , (n, π(n)), where
π(i) is the ith entry of π. For example, the diagram of 7251643 is pictured below.

∗2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70, 42C05

1



t

t
t

t

t
t t

The diagram of 7251643.

The group D4 acts naturally on these diagrams, and therefore on permutations; for any
g ∈ D4 we write πg to denote the image of π under g. We observe that π ∈ Sn contains
σ ∈ Sk if and only if there exist k rows and k columns in the diagram of π whose squares
of intersection form the diagram of σ. It follows that if g ∈ D4 then π avoids σ if and only
if πg avoids σg. In this context it is traditional to single out the following three elements of
D4.

• The reverse map r reverses the order of the entries of π. On diagrams r is the reflection
over a vertical line.

• The complement map c replaces each entry π(j) of π ∈ Sn with n + 1 − π(j). On
diagrams c is the reflection over a horizontal line.

• The inverse map i takes a permutation π to its group-theoretic inverse. On diagrams i
is the reflection over the diagonal from the lower left corner to the upper right corner.

We note that r, c, and i together generate D4, each of them has order two, rc = cr is in the
center of D4, ri = ic, and ci = ir.

For any subgroup H ⊆ D4 and any set R of permutations, let SH
n (R) denote the set

of permutations in Sn which are invariant under every element of H and which avoid every
pattern in R. The set SH

n (R) has been studied for a variety of R when H = {e} or H = {e, i};
among the first results along these lines are those of Simion and Schmidt [15]. More recently,
Egge [4] has enumerated SH

n (R) for other subgroups H ⊆ D4 when R consists of relatively
small patterns. Often these results include refined enumerations, whose answers are given
naturally in terms of binomial coefficients. Building on Egge’s work, Lonoff and Ostroff [10]
have enumerated SH

n (R) for H = {e, rc} and almost all R consisting of one pattern of length
3 and one pattern of length 4. Their answers include the Fibonacci numbers, powers of
2, perfect squares, and triangular numbers, and their work has led to a Fibonacci identity
which appears to be new.

In this paper we study SH
n (k . . . 21) when H = {e, rc} or H = {e, i, rc, rci}; through-

out we abbreviate Sn(R) = S
{e}
n (R), Src

n (R) = S
{e,rc}
n (R), In(R) = S

{e,i}
n (R), and Irc

n (R) =

S
{e,rc,i,rci}
n (R). Using the Robinson-Schensted-Knuth correspondence, Schützenberger’s evac-

uation map, and a known factorization of domino tableaux, we show that for all k ≥ 2 and
all n ≥ 0,

|Src
2n(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(⌈k + 1

2

⌉
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(⌊k + 1

2

⌋
. . . 21

)∣∣∣∣ . (1)
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Similarly, we show that when k ≥ 2 is even and n ≥ 0 we have

|Src
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(
k

2
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(
k + 2

2
. . . 21

)∣∣∣∣ , (2)

and when k > 2 is odd and n ≥ 0 we have

|Src
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(
k + 3

2
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(
k − 1

2
. . . 21

)∣∣∣∣ . (3)

We then combine these results with known enumerations of Sn(k . . . 21) to give several new
enumerations of Src

n (k . . . 21), including

|Src
2n+1(4321)| = |Src

2n(4321)| =
n∑

j=0

(
n

j

)2

Cj (n ≥ 0)

and

|Src
2n(54321)| =

n∑
j=0

(
n

j

)2

CjCn−j (n ≥ 0).

Here, and throughout the paper, we write Cn to denote the nth Catalan number, which is
given by Cn = 1

n+1

(
2n
n

)
.

Turning our attention to Irc
n (k . . . 21), we use the same techniques as in the proofs of (1),

(2), and (3) to show that for all k ≥ 2 and all n ≥ 0,

|Irc
2n(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (⌈k + 1

2

⌉
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(⌊k + 1

2

⌋
. . . 21

)∣∣∣∣ .
Similarly, we show that when k ≥ 2 is even and n ≥ 0 we have

|Irc
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (
k

2
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(
k + 2

2
. . . 21

)∣∣∣∣ ,
and when k > 2 is odd and n ≥ 0 we have

|Irc
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (
k + 3

2
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(
k − 1

2
. . . 21

)∣∣∣∣ .
We then combine these results with known enumerations of In(k . . . 21) to give several new
enumerations of Irc

n (k . . . 21), including

|Irc
2n+1(4321)| = |Irc

2n(4321)| =
n∑

j=0

(
n

j

)(
j

b j
2
c

)
(n ≥ 0)

and
|Irc

2n+1(54321)| = Cn+1 (n ≥ 0).

3



2 Standard Tableaux and the RSK Correspondence

Suppose a1 < a2 < · · · < an are positive integers and λ ` n (that is, λ is a partition of n).
We call a filling of the Ferrers diagram of λ (oriented in the English style) with a1, . . . , an a
tableau whenever its entries increase from left to right across rows and increase from top to
bottom down columns, and we call a tableau standard whenever ai = i for 1 ≤ i ≤ n. In this
context we call λ the shape of the tableau. In this section we briefly recall the Robinson-
Schensted-Knuth (RSK) correspondence between permutations π ∈ Sn and ordered pairs
(P,Q) of standard tableaux of the same shape λ ` n.

Given π ∈ Sn, the RSK correspondence builds ordered pairs (P,Q) of standard tableaux
of the same shape one entry at a time, by inserting the entries of π (read from left to right)
into P and using Q to record where boxes are added to P at each step. That is, the RSK
correspondence builds sequences P1, . . . , Pn and Q1, . . . , Qn of tableaux, in which Pi (resp.
Qi) is obtained from Pi−1 (resp. Qi−1) by adding an appropriate box. To begin this process,
P1 is the tableau with a single box with entry π(1) and Q1 is the tableau with a single box
with entry 1. To obtain Pi from Pi−1, we compare π(i) with the entries in the first row of
Pi−1. If π(i) is larger than all such entries then we add a box to the end of the row with
entry π(i). If π(i) is smaller than one of these entries then we replace the smallest such entry
a with π(i). Now we apply the same process to a and the next row, repeating these steps
until we have added a box to the tableau. To obtain Qi from Qi−1 we add a box with entry
i in the same position as the box we added to Pi−1 to obtain Pi.
Definition 2.1. If π ∈ Sn then we write P (π) (resp. Q(π)) to denote the standard tableau
Pn (resp. Qn) obtained by the RSK correspondence described above.
Example 2.2. If π = 35412 then the sequences P1, P2, P3, P4, P5 and Q1, Q2, Q3, Q4, Q5 are
as in the following table.

i 1 2 3 4 5

Pi

3 3 5 3 4
5

1 4
3
5

1 2
43

5

Qi

1 1 2 1 2
3

1 2
3
4

1 2
53

4

The following result is well-known, so we state it without proof.
Theorem 2.3. ([12, Thm. 3.1.1]) For all n ≥ 1, the map π 7→ (P (π), Q(π)) given by the
RSK correspondence is a bijection between Sn and the set of ordered pairs (P,Q) of standard
tableaux of the same shape with n boxes.

Many authors have written about the RSK correspondence and its properties, but its
name comes from work of Robinson [11], Schensted [13], and Knuth [8]. Our interest in the
RSK correspondence is rooted in the following result of Schensted [13], which has since been
generalized by Greene [7].
Theorem 2.4. ([12, Thm. 3.3.2]) Suppose π ∈ Sn. Then the number of rows of P (π) (and
thus of Q(π)) is equal to the length of the longest decreasing subsequence of π.
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3 Evacuation and rc

In view of Theorems 2.3 and 2.4, to enumerate Src
n (k . . . 21) we need to enumerate ordered

pairs (P,Q) of standard tableaux of the same shape which have at most k − 1 rows, and
whose corresponding permutations are invariant under rc. In this section we describe a
combinatorial operation on tableaux called evacuation, which we use to characterize P (π)
and Q(π) when π is invariant under rc. Evacuation uses Schützenberger’s jeu de taquin [14];
our account is inspired by the exposition of van Leeuwen [9]. We begin with some operations
on standard tableaux.

Suppose P is a standard tableau of shape λ ` n. We may produce a slightly smaller
standard tableau from P as follows. First, remove the 1, so that the box in the upper left
corner of P is empty. Next, compare the number to the right of the empty box with the
number immediately below the empty box, and move the smaller of these two numbers into
the empty box. If only one of these two positions contains a number, then move that number
into the empty box. Repeat this process on each new empty box, as long as the empty box
has an entry to its right or immediately below it. When the empty box has no entry to its
right and no entry below, remove that box from P , and subtract 1 from every number in the
resulting tableau.
Definition 3.1. For any standard tableau P with n boxes, we write e(P ) to denote the
standard tableau with n− 1 boxes obtained by the process described in the paragraph above.
Example 3.2. If P is the standard tableau below on the left then e(P ) is the standard tableau
below on the right.

1 2
53

4

6
8

7

1 4
62

3

5
7

We can invert the action of e on a standard tableau in the following way. Suppose P is
a standard tableau of shape λ ` n, and let c denote a box not in P for which P ∪ {c} is a
legal Ferrers diagram. Then c has a box above it or a box to its left; choose the larger of
the numbers in these boxes and move that number into the empty box. If only one of these
two positions contains a number, then move that number into the empty box. Repeat this
process on the resulting diagram until the empty box is in the upper left corner. Add one
to each entry of the resulting tableau, and put a 1 in the empty box.
Definition 3.3. For any standard tableau P with n boxes and any box c not in P for which
P ∪ {c} is a legal Ferrers diagram, we write ic(P ) to denote the standard tableau with n+ 1
boxes obtained from P by the process described in the paragraph above.
Example 3.4. If P and c are the standard tableau and box given below on the left, then
ic(P ) is the standard tableau given below on the right.

1 4 6
2 5
3 c

1 2 7
3 5
4 6

It is well-known (see [12, p. 114]) that e and ic are inverses of one another. In particular,
we have the following.
Proposition 3.5. If P is a standard tableau with n boxes then the following hold.
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(i) If c is the box removed from P in creating e(P ) then ic(e(P )) = P .

(ii) If c is a box not in P for which P ∪ {c} is a legal Ferrers diagram then e(ic(P )) = P .

Repeatedly applying e to a given standard tableau and recording the results allows us
to produce a new standard tableau of the same shape as the original one. In particular,
suppose P is a standard tableau of shape λ ` n, and let Q be a copy of the Ferrers diagram
of λ in which every box is empty. We may turn Q into a standard tableau of shape λ as
follows. First apply e to P to remove a box from P , and then place n in the corresponding
box of Q. Repeat this process on e(P ), placing n− 1 in the box of Q corresponding to the
next box of P to be removed. Continue in this fashion until P has been emptied.
Definition 3.6. For any standard tableau of shape λ ` n, we write ev(P ) to denote the
evacuation of P , which is the standard tableau of shape λ obtained by the process described
in the paragraph above. We say P is self-evacuating whenever ev(P ) = P .
Example 3.7. If P is the standard tableau below on the left, then ev(P ) is the standard
tableau below on the right.

1 2 7
3 5
4 6

1 2 4
3 5
6 7

We can now characterize those ordered pairs (P (π), Q(π)) of standard tableaux for which
π is invariant under rc.
Theorem 3.8. If π ∈ Sn then P (πrc) = ev(P (π)) and Q(πrc) = ev(Q(π)). In particular,
πrc = π if and only if P (π) and Q(π) are self-evacuating.

Proof. This result is part of an exercise [12, p. 136], but we include a proof here for com-
pleteness.

One finds in Sagan’s text [12, Thm. 3.2.3, Thm. 3.6.6, Thm. 3.9.4] that for all π ∈ Sn,
we have

P (πr) = P (π)t, (4)

where P (π)t is the transpose of P (π),

P (πi) = Q(π), (5)

Q(πi) = P (π), (6)

and
Q(πr) = ev(Q(π)t). (7)

Combining these we find

P (πrc) = P (πriic) (since i2 is the identity)

= P (πriri) (since ic = ri)

= Q(πrir) (by (5))

= ev(Q(πri)t) (by (7))

= ev(P (πr)t) (by (6))

= ev(P (π)) (by (4)).
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The proof that Q(πrc) = ev(Q(π)) is similar.
The last statement of the theorem is immediate from the first statement, since the RSK

correspondence is a bijection.

4 Self-Evacuating Tableaux and Domino Tableaux

In view of Theorem 3.8, we can enumerate Src
n (k . . . 21) by enumerating ordered pairs of

self-evacuating tableaux of the same shape. In this section we show that self-evacuating
tableaux are in bijection with slightly simpler objects called domino tableaux. As in the
previous section, we follow the approach of van Leeuwen [9]. We begin by considering a
simpler way of producing a smaller standard tableau from a given standard tableau.
Definition 4.1. Fix n ≥ 1. For any standard tableau P with n boxes, we write d(P ) to
denote the standard tableau with n− 1 boxes obtained by removing n and its box from P .

The inverse of d is equally easy to describe.
Definition 4.2. Fix n ≥ 0. For any standard tableau P with n boxes and any box c not in P
for which P ∪ {c} is a legal Ferrers diagram, we write ac(P ) to denote the standard tableau
with n+ 1 boxes obtained by putting n+ 1 in c.
Proposition 4.3. Fix n ≥ 1. If P is a standard tableau with n boxes, then the following
hold.

(i) If c is the box removed from P in creating d(P ) then ac(d(P )) = P .

(ii) If c is a box not in P for which P ∪ {c} is a legal Ferrers diagram then d(ac(P )) = P .

Proof. These are immediate from Definitions 4.1 and 4.2.

It is routine to prove our next result, which says that e commutes with d and ic commutes
with ac, so we omit the details.
Proposition 4.4. Fix n ≥ 2. If P is a standard tableau with n boxes, then the following
hold.

(i) d(e(P )) = e(d(P )).

(ii) If c1 and c2 are distinct, adjacent boxes not in P for which P ∪ {c1} and P ∪ {c1, c2}
are legal Ferrers diagrams then ac2(ic1(P )) = ic2(ac1(P )).

As we show next, e and d are dual with respect to evacuation, as are ic and ac.
Proposition 4.5. Fix n ≥ 1. If P is a standard tableau with n boxes, then the following
hold.

(i) ev(e(P )) = d(ev(P )).

(ii) ev(d(P )) = e(ev(P )).

(iii) If c is a box not in P for which P ∪ {c} is a legal Ferrers diagram then ev(ic(P )) =
ac(ev(P )).

(iv) If c is a box not in P for which P ∪ {c} is a legal Ferrers diagram then ev(ac(P )) =
ic(ev(P )).
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Proof. (i) By definition ev(P ) records the order in which boxes are removed from P when e
is applied n times, in such a way that the n in ev(P ) is contained in the first box removed.
Thus, ev(e(P )) records the order in which boxes are removed from e(P ), which must be
d(ev(P )), as claimed.

(ii) In (i), replace P with ev(P ), apply ev to both sides of the result, and use the fact [9,
Thm. 2.2.1] that ev(ev(P )) = P .

(iii) In view of Proposition 3.5(ii), the first box ev removes from ic(P ) is c, and the result
follows.

(iv) This is similar to the proof of (ii), using (iii).

The dualities of e and d, and of ic and ac, allow us to describe how to build self-evacuating
tableaux two boxes at a time.
Proposition 4.6. Fix n ≥ 2 and suppose P is a self-evacuating tableau with n boxes. Then
the following hold.

(i) The box e removes from P and the box d removes from e(P ) are adjacent, and d(e(P ))
is a self-evacuating tableau.

(ii) If c1 and c2 are distinct, adjacent boxes not in P for which P ∪ {c1} and P ∪ {c1, c2}
are both legal Ferrers diagrams then ac2(ic1(P )) is a self-evacuating tableau.

Proof. (i) Since P is self-evacuating, the box e removes from P is the box containing n.
Therefore n slides to an adjacent box when e is applied, and is then removed from that
adjacent box (as n− 1) by d.

To see that d(e(P )) is self-evacuating, note that

ev(d(e(P ))) = e(ev(e(P ))) (by Proposition 4.5(ii))

= e(d(ev(P ))) (by Proposition 4.5(i))

= e(d(P )) (since P is self-evacuating)

= d(e(P )) (by Proposition 4.4(i)).

(ii) This is similar to the last part of the proof of (i), using Propositions 4.4(ii) and
4.5(iii),(iv).

Proposition 4.6 suggests that the entries in a self-evacuating tableau come naturally in
adjacent pairs. To make this idea precise, we recall the notion of a domino tableau.
Definition 4.7. Suppose n ≥ 1 and λ ` n. A domino tableau of shape λ is a filling of the
Ferrers diagram of λ with 1, 2, . . . , bn

2
c for which the following hold.

(i) Each of 1, 2, . . . , bn
2
c appears exactly twice.

(ii) The entries in each row are nondecreasing from left to right.

(iii) The entries in each column are nondecreasing from top to bottom.

(iv) For each i, 1 ≤ i ≤ bn
2
c, the two boxes containing i are adjacent.
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(v) If n is odd then the box in the upper left corner of the Ferrers diagram of λ has no
entry.

As we describe next, domino tableaux of a given shape are in bijection with self-evacuating
tableaux of that shape. To give one such bijection, suppose λ ` 2n and D is a domino tableau
of shape λ. (The construction for λ ` 2n + 1 is similar.) Let P1 be a Ferrers diagram with
two empty boxes, in the same shape as the two boxes in D which contain 1. Place a 1 in
the box in the upper left corner of this diagram, and a 2 in the other box. We now build a
sequence P1, P2, . . . , Pn of standard tableaux, in which Pk contains 1, 2, . . . , 2k and the shape
of Pk is the shape of the set of boxes in D which contain 1, 2, . . . , k. To construct Pk from
Pk−1, first let c1 and c2 be the boxes which contain k in D, chosen so that c1 is either left of
or above c2. Then set Pk = ac2(ic1(Pk−1)). The last tableau in our sequence is the image of
our map.
Definition 4.8. If D is a domino tableau of shape λ ` n, then we write ϕ(D) to denote the
tableau Pbn

2
c obtained from the construction described in the paragraph above.

Example 4.9. If D is the domino tableau given below on the left, then ϕ(D) is the standard
tableau given below on the right.

1 1 3 6 6
2 2 3
4 5 5
4

1 2 3 7 12
4 5 9
6 8 11
10

Example 4.10. If D is the domino tableau given below on the left, then ϕ(D) is the standard
tableau given below on the right.

1 1 5
2 2 4 5
3 3 4
6 6

1 3 4 8
2 7 9 12
5 10 11
6 13

Before showing that ϕ is a bijection, we should show that its image is contained in the
set of self-evacuating tableaux.
Proposition 4.11. If D is a domino tableau of shape λ ` n, then ϕ(D) is self-evacuating.

Proof. Let P1, . . . , Pbn
2
c = ϕ(D) be the sequence of tableaux obtained in the construction of

ϕ(D). Clearly P1 is self-evacuating, so by Proposition 4.6(ii) and induction on k, the tableau
Pk is self-evacuating for all k, 1 ≤ k ≤ bn

2
c. In particular, ϕ(D) = Pbn

2
c is self-evacuating, as

desired.

To show ϕ is a bijection, we describe ϕ−1. To do this, suppose P is a self-evacuating
tableau with n ≥ 1 boxes, and let Q be a copy of the Ferrers diagram of λ in which every
box is empty. Place bn

2
c in each of the two adjacent boxes of Q which are in P but not in

d(e(P )). By Proposition 4.6(i), the tableau d(e(P )) is self-evacuating, so we may repeat this
process until we obtain a domino tableau.
Definition 4.12. If P is a self-evacuating tableau of shape λ ` n, then we write ψ(P ) to
denote the domino tableau obtained from the construction described in the paragraph above.

In view of Propositions 3.5, 4.3, and 4.4, the map ψ is a step by step reversal of ϕ, so ϕ
and ψ are inverse functions. In particular, by induction on n we have the following result.
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Theorem 4.13. The following hold for all n ≥ 1.

(i) For any domino tableau D of shape λ ` n, we have ψ(ϕ(D)) = D.

(ii) For any self-evacuating tableau P of shape λ ` n, we have ϕ(ψ(P )) = P .

In particular, for all n ≥ 1, the maps ϕ and ψ are inverse bijections between the set of all
domino tableaux of shape λ ` n and the set of all self-evacuating tableaux of shape λ ` n.

5 Domino Tableaux and Pairs of Tableaux

We have now reduced the problem of enumerating Src
n (k . . . 21) to the problem of enumerating

ordered pairs of domino tableaux of the same shape with n boxes and at most k−1 rows. In
this section we show how such a domino tableau may be uniquely factored into an ordered
pair of tableaux. Although the factorization we give can be described more generally (as van
Leeuwen [9] does), throughout we consider domino tableaux with exactly k−1 rows, and we
include domino tableaux with fewer rows in this set by appending rows of length 0.

Suppose D is a domino tableau with n boxes and exactly k− 1 rows. To describe how to
factor D into an ordered pair of tableaux, we first consider the boundary of D. Beginning
at the southwest corner of this boundary, encode the southeast boundary as an infinite
sequence of vertical and horizontal steps, which contains exactly k − 1 vertical steps. For
instance, if k = 6 and the shape of D is 7, 3, 2 then the corresponding string of steps is
vvhhvhvhhhhvhhhh . . .. Number these steps from left to right beginning with 1, let Po(D)
be the Ferrers diagram whose southeast boundary is given by the steps with odd numbers,
and let Pe(D) be the Ferrers diagram whose southeast boundary is given by the steps with
even numbers. For instance, if k = 6 and the shape of D is 7, 3, 2 then Po(D) has shape
1, 1, 0 and Pe(D) has shape 4, 0.

To fill in the entries of Po(D) and Pe(D), we imagine building D one domino at a time,
in increasing order of its entries. Each domino changes three consecutive entries of the
boundary string of D from vvh to hvv, or from vhh to hhv. Therefore, each domino adds
either one box to Po(D) or one box to Pe(D); put the label of the domino in that box of
Po(D) or Pe(D).
Definition 5.1. For any domino tableau D, we write (Po(D), Pe(D)) to denote the ordered
pair of tableaux obtained from D by the process described above.
Example 5.2. If D is the domino tableau below on the left and k = 4, then Po(D) is the
tableau below in the center and Pe(D) is the tableau below on the right.

1 2 2 4 4 8 9
1 3 3 6 6 8 9
5 5 7 7

3 6 8
5 7 1 2 4 9

As we show next, domino tableaux with 2n boxes and exactly k− 1 rows can only factor
into certain pairs of tableaux.
Proposition 5.3. Fix n ≥ 1 and k ≥ 2, and suppose D is a domino tableau with 2n boxes
and exactly k − 1 rows. Then the following hold.

(i) Each of 1, 2, . . . , n appears in exactly one of Po(D), Pe(D).
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(ii) Po(D) has exactly dk−1
2
e rows and Pe(D) has exactly bk−1

2
c rows. In each case some of

these rows may have length 0.

Proof. (i) This is immediate from the construction of Po(D) and Pe(D).
(ii) This is immediate by induction on n.

We have a similar result for domino tableaux with 2n+ 1 boxes.
Proposition 5.4. Fix n ≥ 1 and k ≥ 2, and suppose D is a domino tableau with 2n + 1
boxes and exactly k − 1 rows. Then the following hold.

(i) Each of 1, 2, . . . , n appears in exactly one of Po(D), Pe(D).

(ii) If k is odd then Po(D) has exactly k+1
2

rows and Pe(D) has exactly k−3
2

rows. In each
case some of these rows may have length 0.

(iii) If k is even then Po(D) has exactly k
2
− 1 rows and Pe(D) has exactly k

2
rows. In each

case some of these rows may have length 0.

Proof. This is similar to the proof of Proposition 5.3.

We now show that the map D 7→ (Po(D), Pe(D)) is a bijection between domino tableaux
with 2n boxes and k−1 rows and ordered pairs (Po, Pe) of tableaux which satisfy Proposition
5.3(i),(ii).
Theorem 5.5. Fix n ≥ 1 and k ≥ 2, and suppose (Po, Pe) is an ordered pair of tableaux
which satisfies Proposition 5.3(i),(ii) (resp. Proposition 5.4(i),(ii),(iii)). Then there is a
unique domino tableau D with 2n (resp. 2n + 1) boxes and exactly k − 1 rows for which
Po(D) = Po and Pe(D) = Pe.

Proof. To recover the shape of a domino tableau D which maps to (Po, Pe), first encode the
boundaries of Po and Pe as strings of hs and vs as in the original map. Then there is a
unique string of hs and vs with Po’s boundary string in its even positions and Pe’s boundary
string in its odd positions; this must be the boundary string of D. Since Po has dk−1

2
e rows

and Pe has bk−1
2
c rows, D will have k − 1 rows.

To recover the entries in the boxes of D, first note that if D has just two boxes then each
must contain a 1. If D has 2n > 2 boxes then we first label two adjacent boxes in D with n,
and proceed by induction.

Since Po and Pe satisfy Proposition 5.3(i), there is a unique box in Po or Pe which contains
n. This box is the intersection of a column created by an h and a row created by a v in
the boundary string of its shape. This h and v correspond to an h and a v in the boundary
string of D, so this box has a unique corresponding box in D; by construction of Po(D) and
Pe(D) we must have an m in this box. To find a second box in D in which to place an
n, first note that the n in Po or Pe is in an outer corner, which is formed by an hv in the
boundary string of its shape. Therefore the n in D is in a box formed by a substring of
the form hhv or hvv. In either case, the box containing n is adjacent to exactly one outer
corner of D, so this outer corner must also contain an n. Now remove these two boxes from
D and remove the box containing n from Po or Pe. The resulting D is the partial domino
tableau obtained from the resulting Po and Pe, so by induction it has a unique extension to
a domino tableau.
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6 Enumerations of Permutations

We now have the tools we need to enumerate Src
n (k . . . 21) in terms of classical pattern-

avoiding permutations.
Theorem 6.1. For all n ≥ 0 and all k ≥ 2 we have

|Src
2n(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(⌈k + 1

2

⌉
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(⌊k + 1

2

⌋
. . . 21

)∣∣∣∣ . (8)

Proof. By Theorems 2.3, 2.4, 3.8, 4.13, and 5.5, the set S2n(k . . . 21) is in bijection with
the set of ordered quadruples (Po, Pe, Qo, Qe) of tableaux in which the ordered pairs (Po, Pe)
and (Qo, Qe) satisfy Proposition 5.3(i),(ii), the tableaux Po and Qo have the same shape,
and the tableaux Pe and Qe have the same shape. Now let j be the number of boxes in
Po (and thus in Qo) and observe that 0 ≤ j ≤ n. For each ordered pair (Po, Qo) (resp.
(Pe, Qe)), let P ′ (resp. Q′) be the set of entries in Po (resp. Qo), replace each tableau with
the standard tableau of the same shape whose entries are in the same relative positions,
and apply the inverse of the RSK correspondence. This gives a bijection between the set of
ordered quadruples (Po, Pe, Qo, Qe) and the set of ordered quadruples (P ′, Q′, πo, πe), where
P ′ and Q′ are subsets of [n] of size j, πo ∈ Sj

(⌈
k+1
2

⌉
. . . 21

)
, and πe ∈ Sn−j

(⌊
k+1
2

⌋
. . . 21

)
.

These quadruples are enumerated by the expression on the right side of (8).

Theorem 6.2. For all n ≥ 0 and all k ≥ 2 the following hold.

(i) If k is odd then

|Src
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(
k + 3

2
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(
k − 1

2
. . . 21

)∣∣∣∣ . (9)

(ii) If k is even then

|Src
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

)2 ∣∣∣∣Sj

(
k

2
. . . 21

)∣∣∣∣ ∣∣∣∣Sn−j

(
k + 2

2
. . . 21

)∣∣∣∣ . (10)

Proof. This is similar to the proof of Theorem 6.1.

It is easy to see that
|Sn(21)| = 1 (n ≥ 0), (11)

and it is well-known that

|Sn(321)| = Cn (n ≥ 0). (12)

In addition, Gessel [6], Gessel, Weinstein, and Wilf [5], and Bousquet-Mélou [2] have shown
that

|Sn(4321)| = 1

(n+ 1)2(n+ 2)

n∑
j=0

(
2j

j

)(
n+ 1

j + 1

)(
n+ 2

j + 1

)
(n ≥ 0). (13)

Combining these results with Theorems 6.1 and 6.2 gives us the following explicit enumera-
tions.
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Corollary 6.3. For all n ≥ 0 we have

|Src
2n(321)| =

(
2n

n

)
, (14)

|Src
2n+1(4321)| = |Src

2n(4321)| =
n∑

j=0

(
n

j

)2

Cj,

|Src
2n(54321)| =

n∑
j=0

(
n

j

)2

CjCn−j,

|Src
2n+1(54321)| =

n∑
j=0

(
n

j

)2
1

(j + 1)2(j + 2)

j∑
i=0

(
2i

i

)(
j + 1

i+ 1

)(
j + 2

i+ 1

)
,

|Src
2n+1(654321)| = |Src

2n(654321)| =
n∑

j=0

(
n

j

)2
Cn−j

(j + 1)2(j + 2)

j∑
i=0

(
2i

i

)(
j + 1

i+ 1

)(
j + 2

i+ 1

)
.

Proof. To prove (14), set k = 3 in (8) and use (11) and the fact that
∑n

j=0

(
n
j

)2
=

(
2n
n

)
to

simplify the result. The proofs of the remaining results are similar, using (12) and (13).

We note that Egge [4] has previously proved (14) using generating functions and the
kernel method.

7 Enumerations of Involutions

Having enumerated Src
n (k . . . 21), we now turn our attention to Irc

n (k . . . 21). We begin with
the following characterization of P (π) and Q(π) when π is an involution.
Proposition 7.1. ([12, Thm. 3.6.6]) Fix n ≥ 1 and suppose π ∈ Sn. Then π is an involution
if and only if P (π) = Q(π).

Proposition 7.1 allows us to prove the following analogue of Theorems 6.1 and 6.2 for
involutions.
Theorem 7.2. The following hold for all n ≥ 0 and all k ≥ 2.

(i) We have

|Irc
2n(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (⌈k + 1

2

⌉
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(⌊k + 1

2

⌋
. . . 21

)∣∣∣∣ . (15)

(ii) If k is odd then

|Irc
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (
k + 3

2
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(
k − 1

2
. . . 21

)∣∣∣∣ . (16)
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(iii) If k is even then

|Irc
2n+1(k . . . 21)| =

n∑
j=0

(
n

j

) ∣∣∣∣Ij (
k

2
. . . 21

)∣∣∣∣ ∣∣∣∣In−j

(
k + 2

2
. . . 21

)∣∣∣∣ . (17)

Proof. This is similar to the proofs of Theorems 6.1 and 6.2, using Proposition 7.1.

It is easy to see that
|In(21)| = 1 (n ≥ 0), (18)

Gessel [6] and Simion and Schmidt [15] have shown that

|In(321)| =
(
n

bn
2
c

)
(n ≥ 0), (19)

and Gessel [6] has shown that

|In(4321)| = Mn (n ≥ 0) (20)

and
|In(54321)| = Cbn+1

2
cCdn+1

2
e (n ≥ 0). (21)

Here Mn is the nth Motzkin number [3], which may be defined by M0 = 1 and Mn =
Mn−1 +

∑n
k=2Mk−2Mn−k for n ≥ 1. Combining these results with Theorem 7.2 gives us the

following explicit enumerations.
Corollary 7.3. For all n ≥ 0 we have

|Irc
2n(321)| = 2n, (22)

|Irc
2n+1(4321)| = |Irc

2n(4321)| =
n∑

j=0

(
n

j

)(
j

b j
2
c

)
,

|Irc
2n(54321)| =

(
n

bn
2
c

)(
n+ 1

bn+1
2
c

)
, (23)

|Irc
2n+1(54321)| = Cn+1, (24)

|Irc
2n+1(654321)| = |Irc

2n(654321)| =
n∑

j=0

(
n

j

)(
n− j

bn−j
2
c

)
Mj,

|Irc
2n(7654321)| =

n∑
j=0

(
n

j

)
MjMn−j,

|Irc
2n+1(7654321)| =

n∑
j=0

(
n

j

)(
n− j

bn−j
2
c

)
Cb j+1

2
cCd j+1

2
e,

and

|Irc
2n+1(87654321)| = |Irc

2n(87654321)| =
n∑

j=0

(
n

j

)
Cb j+1

2
cCd j+1

2
eMn−j.
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Proof. To prove (24), set k = 5 in (16) and use (18) and (20) to simplify the result, obtaining

|Irc
2n+1(54321)| =

n∑
j=0

(
n

j

)
Mj (n ≥ 0).

It is well-known that
∑∞

j=0Mjx
j = 1−x−

√
1−2x−3x2

2x2 and
∑∞

n=0Cnx
n = 1−

√
1−4x

2x
, so we can use

Wilf’s snake oil method [16] to find

∞∑
n=0

n∑
j=0

(
n

j

)
Mjx

n =
∞∑

j=0

Mjx
j

∞∑
n=0

(
j + n

j

)
xn

=
1

1− x

∞∑
j=0

Mj

(
x

1− x

)j

=
1− 2x−

√
1− 4x

2x2

=
∞∑

n=0

Cn+1x
n.

It follows that
∑n

j=0

(
n
j

)
Mj = Cn+1 for n ≥ 0, as desired.

The proofs of the remaining results are similar. In the proof of (23) one can use the
Chu-Vandermonde identity [1, Cor. 2.2.3 and Sec. 2.7] to show that

n∑
j=0

(
n

j

)(
j

b j
2
c

)(
n− j

bn−j
2
c

)
=

(
n

bn
2
c

)(
n+ 1

bn+1
2
c

)
(n ≥ 0).

We note that Egge [4] has previously proved (22) using combinatorial methods.
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