
A Generalization of the Terwilliger Algebra

Eric S. Egge

Department of Mathematics
Gettysburg College

300 North Washington Street
Gettysburg, PA 17325 USA

eggee@member.ams.org

Abstract

In [41] Terwilliger considered the C-algebra generated by a given Bose Mesner algebra M and the asso-
ciated dual Bose Mesner algebra M∗. This algebra is now known as the Terwilliger algebra and is usually
denoted by T . Terwilliger showed that each vanishing intersection number and Krein parameter of M gives
rise to a relation on certain generators of T . These relations determine much of the structure of T , though
not all of it in general. To illuminate the role these relations play, we consider a certain generalization T of
T . To go from T to T , we replace M and M∗ with a pair of dual character algebras C and C∗. We define T
by generators and relations; intuitively T is the associative C-algebra with identity generated by C and C∗

subject to the analogues of Terwilliger’s relations. T is infinite dimensional and noncommutative in general.
We construct an irreducible T -module which we call the primary module; the dimension of this module is
the same as that of C and C∗. We find two bases of the primary module; one diagonalizes C and the other
diagonalizes C∗. We compute the action of the generators of T on these bases. We show T is a direct sum of
two sided ideals T0 and T1 with T0 isomorphic to a full matrix algebra. We show that the irreducible module
associated with T0 is isomorphic to the primary module. We compute the central primitive idempotent of T
associated with T0 in terms of the generators of T .

1 Introduction

There is an object in algebraic combinatorics known as a Bose Mesner algebra. There are several
equivalent definitions [9, 17, 32], but one that is particularly compact is the following [17, 32]. Let
n denote a positive integer, let Mn(C) denote the C-algebra of all n by n matrices with complex
entries, and let J ∈ Mn(C) denote the matrix whose entries are all 1. By a Bose Mesner algebra
of order n we mean a commutative subalgebra M of Mn(C) which contains J and which is closed
under transposition and entrywise multiplication. The vector space M together with entrywise
multiplication is a commutative C-algebra with identity J ; we refer to this algebra as M ′. To avoid
dealing directly with the entrywise product, it is convenient to consider a certain subalgebra M∗

of Mn(C) which is isomorphic to M ′; this algebra is constructed as follows. For all X ∈ M , let
ρ(X) denote the diagonal matrix in Mn(C) whose iith entry is equal to Xi1, for 1 ≤ i ≤ n. For
example, ρ(J) = I, the identity matrix in Mn(C). Observe that the map ρ : M → Mn(C) is linear
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and let M∗ denote the image of M under ρ. Since M is closed under entrywise multiplication and
contains J , we see that M∗ is closed under ordinary matrix multiplication and contains I. It follows
that M∗ is a subalgebra of Mn(C), and one can show that ρ : M ′ → M∗ is an isomorphism of C-
algebras [41]. The subalgebra T of Mn(C) generated by M and M∗ is known as the subconstituent
algebra or the Terwilliger algebra [41]. It has been used to study P - and Q-polynomial association
schemes [18, 41], group association schemes [8, 10], strongly regular graphs [44], Doob schemes [40],
and association schemes over the Galois rings of characteristic four [31]. Other work involving the
Terwilliger algebra can be found in [19, 20, 22, 24, 23, 21, 25, 27, 28, 29, 42, 43].

In this paper we introduce a generalization T of the Terwilliger algebra. We define T by gen-
erators and relations; in general, the result is infinite dimensional and noncommutative. Before
describing T , we set the stage by saying a bit more about M , M∗, and T .

The algebras M and M∗ each have two bases of interest to us. To obtain one basis of M , observe
that M ′ is semisimple, since it contains no nonzero nilpotent elements [37, Theorem 3.9]. Since M ′

is also commutative, it has a basis A0, . . . , Ad consisting of mutually orthogonal idempotents. These
matrices have all entries equal to zero or one and their sum is J . Moreover, for 0 ≤ i ≤ d there exists
a positive integer ki such that each row and column of Ai contains exactly ki ones; this can be shown
using the fact that Ai commutes with J . By definition of M we have I ∈ M and it follows that I is
one of A0, . . . , Ad; by convention we take A0 = I. We define E∗

i = ρ(Ai) for 0 ≤ i ≤ d and we observe
that E∗

0 , . . . , E∗
d is a basis of mutually orthogonal idempotents of M∗. To obtain the other basis of

M , we show that M is semisimple. Observe that M is closed under complex conjugation, since it
has a basis A0, . . . , Ad whose entries are all real. By definition M is closed under transposition, so
it is closed under the conjugate transpose. It follows that M is semisimple [26, p. 157]. Since M
is also commutative, it has a basis E0, . . . , Ed consisting of mutually orthogonal idempotents. The
matrix n−1J is a rank one idempotent and so must be among E0, . . . , Ed; by convention we take
E0 = n−1J . We define A∗

i = nρ(Ei) for 0 ≤ i ≤ d. Observe that A∗
0, . . . , A

∗
d is a basis for M∗ and

that A∗
0 = I.

The inspiration for T is a result of Terwilliger concerning certain triple products in T ; to describe
this result, we recall two sets of parameters. Since A0, . . . , Ad is a basis for M , there exist scalars
ph

ij such that

AiAj =
d∑

h=0

ph
ijAh; (0 ≤ i, j ≤ d)

these are known as the intersection numbers of M . Similarly, there exist scalars ph∗
ij such that

A∗
i A

∗
j =

d∑

h=0

ph∗
ij A∗

h; (0 ≤ i, j ≤ d)

these are the known as the intersection numbers of M∗ and also as the Krein parameters of M .
Terwilliger showed in [41] that for 0 ≤ h, i, j ≤ d we have

E∗
hAiE

∗
j = 0 iff ph

ij = 0

and
EhA∗

i Ej = 0 iff ph∗
ij = 0.

We now describe the algebra T . Let C denote an associative C-algebra with a basis x0, . . . , xd

such that

xixj =
d∑

h=0

ph
ijxh. (0 ≤ i, j ≤ d) (1)
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Observe that C is isomorphic to M ; in fact, the linear map from M to C which maps Ai to xi for
0 ≤ i ≤ d is an isomorphism of algebras. We write ei to denote the image of Ei under this map and
we observe that e0, . . . , ed is a basis of C consisting of mutually orthogonal idempotents. Similarly,
let C∗ denote an associative C-algebra with a basis x∗

0, . . . , x
∗
d such that

x∗
i x

∗
j =

d∑

h=0

ph∗
ij x∗

h. (0 ≤ i, j ≤ d) (2)

Then C∗ is isomorphic to M∗ and the linear map from M∗ to C∗ which maps A∗
i to x∗

i for 0 ≤ i ≤ d
is an isomorphism of algebras. We write e∗i to denote the image of E∗

i under this map and we observe
that e∗0, . . . , e

∗
d is a basis of C∗ consisting of mutually orthogonal idempotents. We define T to be

the associative C-algebra with identity generated by x0, . . . , xd, x
∗
0, . . . , x

∗
d subject to the relations

(1), (2), x0 = x∗
0,

e∗hxie
∗
j = 0 if ph

ij = 0, (0 ≤ h, i, j ≤ d) (3)

and
ehx∗

i ej = 0 if ph∗
ij = 0. (0 ≤ h, i, j ≤ d) (4)

The element x0 = x∗
0 is the identity in T . Intuitively, T is the associative C-algebra with identity

generated by C and C∗ subject to the relations (3) and (4). We observe that T is a homomorphic
image of T .

In our description above, the algebra T is constructed from a given Bose Mesner algebra. How-
ever, in some sense we only needed the algebras C and C∗. These algebras are examples of character
algebras; see section 2 for a precise definition. In our main results we define T using character al-
gebras; we do not assume an underlying Bose Mesner algebra.

We now describe our main results. We show that x0, . . . , xd remain linearly independent in T ,
and hence form a basis for a subalgebra of T which is isomorphic to C. Similarly, we show x∗

0, . . . , x
∗
d

form a basis for a subalgebra of T which is isomorphic to C∗. For any T -module V , we show the
following are equivalent: (i) V is irreducible and e0V 6= 0, (ii) V is irreducible and e∗0V 6= 0, (iii)
dim eiV = 1 for 0 ≤ i ≤ d, and (iv) dim e∗i V = 1 for 0 ≤ i ≤ d. We show that there exists a
T -module which satisfies (i)–(iv) and that this module is unique up to isomorphism; we refer to
this module as the primary module. Let V denote the primary module. We show that for every
nonzero u ∈ e0V , the vectors e∗0u, . . . , e∗du form a basis for V . Similarly, we show that for every
nonzero v ∈ e∗0V , the vectors e0v, . . . , edv form a basis for V . We compute the action of the elements
xi, x

∗
i , ei, and e∗i on these bases. We consider certain two sided ideals T0 and T1 of T . We show

that T is the direct sum of T0 and T1 and that T0 is isomorphic to Md+1(C). We show that the
irreducible T -module associated with T0 is isomorphic to the primary module. We compute the
central primitive idempotent of T associated with T0 in terms of the elements ei and e∗i .

We conclude this section by setting some notation. We write C to denote the field of complex
numbers and R to denote the field of real numbers. For all α ∈ C, we write α to denote the complex
conjugate of α. From now on when we consider a matrix it will be convenient to index the rows
and columns starting with zero. So for the rest of this paper we will regard matrices in Md+1(C) as
having rows and columns indexed by 0, . . . , d. For 0 ≤ i, j ≤ d we write eij to denote the matrix in
Md+1(C) with a 1 in the ijth entry and zeros in all other entries. Suppose A is a set and f : A → A
is a map. We say f is an involution whenever f2 is the identity map on A. In particular, the identity
map on A is an involution.
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2 Character Algebras

In this section we recall the notion of a character algebra (or C-algebra, for short) and state some
basic results. For more information on character algebras, see [5, 9, 13, 30, 33, 35, 36]. We remark
that in [35, 36] a character algebra is the same object as the double algebra of a finite abelian
classlike hypergroup.

Definition 2.1 A character algebra C = < X0, . . . ,Xd > is a finite dimensional associative
C-algebra together with a basis X0, . . . ,Xd having the following properties.

1. C is commutative.
2. X0 is the multiplicative identity element of C.
3. Let ph

ij (0 ≤ h, i, j ≤ d) denote complex numbers such that

XiXj =
d∑

h=0

ph
ijXh. (0 ≤ i, j ≤ d) (5)

Then ph
ij ∈ R for 0 ≤ h, i, j ≤ d.

4. There exist a permutation i 7→ i′ of 0, . . . , d and positive real numbers ki (0 ≤ i ≤ d) such
that

p0
ij = δji′ki. (0 ≤ i, j ≤ d) (6)

5. The linear map τ : C → C which satisfies τ(Xi) = Xi′ for 0 ≤ i ≤ d is a C-algebra
isomorphism.

6. The linear map π0 : C → C which satisfies π0(Xi) = ki for 0 ≤ i ≤ d is a C-algebra
homomorphism.

We refer to the scalars ki as the valencies of C. We refer to the scalars ph
ij as the structure

constants of C.

We observe that by (6) and commutativity, the permutation ′ is unique and is an involution.

Remark A character algebra whose structure constants are all nonnegative is essentially the same
object as a table algebra. For more information on table algebras, see [1, 2, 3, 4, 6, 7, 11, 12, 14,
15, 16, 45, 46].

We present four examples of character algebras.

Example 2.2 [9, Sections II.2, II.3] Suppose M is a Bose Mesner algebra and A0, . . . , Ad are as
in the introduction. Then M = < A0, . . . , Ad > is a character algebra. In this example, τ is the
transpose map and π0 is the character of M associated with E0.

Example 2.3 [9, Sections II.2, II.3] Let the Bose Mesner algebra M be as in the previous example,
let M∗ denote the dual Bose Mesner algebra associated with M , and define A∗

0, . . . , A
∗
d as in the

introduction. Then M∗ = < A∗
0, . . . , A

∗
d > is a character algebra. In this example, τ is the complex

conjugation map and π0 is the character of M∗ associated with E∗
0 .

Example 2.4 [13, p. 26–28] Suppose G is a finite group and let CG denote the group algebra of G
over C. Let C0 = {1G}, C1, . . . , Cd denote the conjugacy classes of G and write

Xi =
∑

x∈Ci

x. (0 ≤ i ≤ d)

Then C = < X0, . . . ,Xd > is a character algebra, with Ci′ = {x−1 | x ∈ Ci} and ki = |Ci| for
0 ≤ i ≤ d. We observe that C is the center of CG.
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Example 2.5 [13, p. 26–28] Suppose G is a finite group. Let χ0 denote the trivial complex char-
acter of G, and let χ1, . . . , χd denote the remaining irreducible complex characters of G. Write

Xi = diχi, (0 ≤ i ≤ d)

where di = deg χi for 0 ≤ i ≤ d. Then C = < X0, . . . ,Xd > is a character algebra, with χi′ = χi

and ki = d2
i for 0 ≤ i ≤ d.

The structure constants and valencies of a character algebra satisfy certain relations; we recall
those which will be useful later on.

Proposition 2.6 ([9, p.88,89]) Suppose C = < X0, . . . ,Xd > is a character algebra. Then
(i) ph

ij = ph
ji, (0 ≤ h, i, j ≤ d)

(ii) ph
0j = ph

j0 = δhj, (0 ≤ h, j ≤ d)

(iii) khph
ij = kjp

j
i′h, (0 ≤ h, i, j ≤ d)

(iv) ph′
i′j′ = ph

ij, (0 ≤ h, i, j ≤ d)
(v) 0′ = 0.

For the rest of this section, let C = < X0, . . . ,Xd > denote a character algebra. We now describe
the algebraic structure of C. The scalar

N =
d∑

i=0

ki (7)

will play a role in our description; we observe by Definition 2.1(4) that N ∈ R>0. We refer to N as
the size of C. By [9, Proposition 5.4, p. 92] there exists a basis E0, . . . , Ed of C such that

EiEj = δijEi, (0 ≤ i, j ≤ d) (8)

X0 =
d∑

i=0

Ei, (9)

and

E0 = N−1
d∑

i=0

Xi. (10)

The basis E0, . . . , Ed is unique up to a permutation of E1, . . . , Ed. We refer to the elements
E0, . . . , Ed as the primitive idempotents of C.

Since X0, . . . ,Xd and E0, . . . , Ed are bases of C, there exist complex scalars pi(j) (0 ≤ i, j ≤ d)
such that

Xi =
d∑

j=0

pi(j)Ej (0 ≤ i ≤ d) (11)

and complex scalars qi(j) (0 ≤ i, j ≤ d) such that

Ei = N−1
d∑

j=0

qi(j)Xj . (0 ≤ i ≤ d) (12)
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Combining (11) and (8), we see that

XiEj = pi(j)Ej . (0 ≤ i, j ≤ d) (13)

In view of (13), we refer to pi(j) as the ijth eigenvalue of C (with respect to the given ordering
E0, . . . , Ed). We refer to qi(j) as the ijth dual eigenvalue of C (with respect to the given ordering
E0, . . . , Ed).

Next we recall several identities involving the eigenvalues and dual eigenvalues of C. Combining
(11) and (12) we find that

d∑

j=0

pi(j)qj(h) = δihN (0 ≤ h, i ≤ d) (14)

and
d∑

j=0

qi(j)pj(h) = δihN. (0 ≤ h, i ≤ d) (15)

Setting i = 0 in (11) and comparing the result with (9) we see that

p0(i) = 1. (0 ≤ i ≤ d) (16)

Similarly, using (12) and (10) we find

q0(i) = 1. (0 ≤ i ≤ d) (17)

Applying π0 to (10) and using (7) we find that π0(E0) = 1. Now setting j = 0 in (13) and applying
π0 to the result gives

pi(0) = ki. (0 ≤ i ≤ d) (18)

Motivated by (18), we write
mi = qi(0). (0 ≤ i ≤ d) (19)

By [9, Theorem 5.5, p. 94] we have

pi(j)mj = qj(i)ki (0 ≤ i, j ≤ d) (20)

and
mi ∈ R>0. (0 ≤ i ≤ d) (21)

We now recall several identities involving the complex conjugates of the eigenvalues and dual
eigenvalues of C. By [9, p. 90] we have

pi′(j) = pi(j); (0 ≤ i, j ≤ d) (22)

combining this with (14) gives

qi(j′) = qi(j). (0 ≤ i, j ≤ d) (23)

There exists a permutation i 7→ î of 0, . . . , d such that τ(Ei) = Eî for 0 ≤ i ≤ d; it is routine to
verify that this permutation is an involution and satisfies 0̂ = 0. Using (11), (12), (22), and (23),
one can also show that

pi(ĵ) = pi(j) (0 ≤ i, j ≤ d) (24)

6



and
qî(j) = qi(j). (0 ≤ i, j ≤ d) (25)

We conclude our discussion of C by recalling how the structure constants of C are determined
by the eigenvalues and dual eigenvalues of C. Namely, by [9, p. 96] we have

ph
ij = N−1

d∑

r=0

pi(r)pj(r)qr(h). (0 ≤ h, i, j ≤ d) (26)

Using (26) in combination with (15), one can also show that

pi(r)pj(r) =
d∑

h=0

ph
ijph(r). (0 ≤ i, j, r ≤ d) (27)

3 Dual Character Algebras

In this section we describe the notion of duality for character algebras. The interested reader will
find another account of these ideas in [9]. We begin by recalling the matrix of eigenvalues of a
character algebra.

Definition 3.1 Suppose C = < X0, . . . ,Xd > is a character algebra and fix an ordering E0, . . . , Ed

of the primitive idempotents of C. Let P denote the matrix in Md+1(C) which satisfies

Pij = pj(i). (0 ≤ i, j ≤ d) (28)

We refer to P as the matrix of eigenvalues of C associated with the ordering E0, . . . , Ed.

We are now ready to define duality.

Definition 3.2 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras.
Fix an ordering E0, . . . , Ed of the primitive idempotents of C and let P denote the associated matrix
of eigenvalues. Fix an ordering E∗

0 , . . . , E∗
d of the primitive idempotents of C∗ and let P ∗ denote the

associated matrix of eigenvalues. We say C and C∗ are dual (with respect to the given orderings of
their primitive idempotents) whenever

PP ∗ ∈ Span{I}. (29)

In this case the size N of C and the size N∗ of C∗ coincide and PP ∗ = NI.

We present two examples of duality.

Example 3.3 Let M denote a Bose Mesner algebra and define A0, . . . , Ad and E0, . . . , Ed as in
the introduction. Let M∗ denote the associated dual Bose Mesner algebra and define A∗

0, . . . , A
∗
d

and E∗
0 , . . . , E∗

d as in the introduction. By Examples 2.2 and 2.3, M = < A0, . . . , Ad > and
M∗ = < A∗

0, . . . , A
∗
d > are character algebras. Moreover, E0, . . . , Ed is an ordering of the prim-

itive idempotents of M and E∗
0 , . . . , E∗

d is an ordering of the primitive idempotents of M∗. Recall
from the introduction that there exists an isomorphism ρ : M → M∗ of vector spaces such that
E∗

i = ρ(Ai) and A∗
i = n−1ρ(Ei) for 0 ≤ i ≤ d, where n is the order of M . It follows that the tran-

sition matrix from A∗
0, . . . , A

∗
d to E∗

0 , . . . , E∗
d is n−1 times the transition matrix from E0, . . . , Ed to

A0, . . . , Ad. Therefore, M and M∗ are dual with respect to the orderings E0, . . . , Ed and E∗
0 , . . . , E∗

d .
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Example 3.4 [13, p. 26–28] Suppose G is a finite group, let C denote the corresponding character
algebra of Example 2.4, and let C∗ denote the corresponding character algebra of Example 2.5. There
is a natural one to one correspondence between the irreducible characters of G and the primitive
idempotents of C; this correspondence induces an ordering of the primitive idempotents of C with
respect to which C and C∗ are dual in the sense of Definition 3.2. For this ordering, P is essentially
the character table of G. More specifically, let C0, C1, . . . , Cd denote the conjugacy classes of G as
in Example 2.4 and let χ0, χ1, . . . , χd denote the irreducible complex characters of G as in Example
2.5. Then for 0 ≤ i, j ≤ d we have Pij = |Cj|d−1

i χi(gj), where di = deg χi and gj ∈ Cj.

The following notational convention will be useful when we deal with dual character algebras.

Note 3.5 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras which
are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive idempotents. If

we write f to denote a particular object associated with C and E0, . . . , Ed then we write f∗ to denote
the corresponding object associated with C∗ and E∗

0 , . . . , E∗
d .

The next two propositions describe certain relationships between two character algebras which
are dual. We omit their proofs, which are routine.

Proposition 3.6 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras
which are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive idempotents.

With reference to Note 3.5,
(i) pi(j) = q∗i (j), (0 ≤ i, j ≤ d)
(ii) qi(j) = p∗i (j), (0 ≤ i, j ≤ d)
(iii) ki = m∗

i , (0 ≤ i ≤ d)
(iv) mi = k∗

i . (0 ≤ i ≤ d)

Proposition 3.7 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras
which are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive idempotents.

Then
(i) the map i 7→ i′ associated with C is the same as the map i 7→ î associated with C∗ and

E∗
0 , . . . , E∗

d ,
(ii) the map i 7→ î associated with C and E0, . . . , Ed is the same as the map i 7→ i′ associated

with C∗.

The following convention describes the notation we will use for the maps given in Proposition
3.7.

Note 3.8 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras which
are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive idempotents. For

0 ≤ i ≤ d, we write i′ (resp. î) to denote the image of i under the map discussed in Proposition
3.7(i) (resp. 3.7(ii)).

4 The Algebra T
In this section we introduce the Terwilliger algebra T associated with a pair of dual character
algebras.
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Definition 4.1 Suppose C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > are character algebras
which are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive idempotents.

With reference to Note 3.5, let T denote the associative C-algebra with 1 which is generated by the
symbols x0, . . . , xd, x

∗
0, . . . , x

∗
d subject to the relations

(T1) x0 = x∗
0,

(T2) xixj =
d∑

h=0

ph
ijxh, (0 ≤ i, j ≤ d)

(T2*) x∗
i x

∗
j =

d∑
h=0

ph∗
ij x∗

h, (0 ≤ i, j ≤ d)

(T3) e∗hxie
∗
j = 0 if ph

ij = 0, (0 ≤ h, i, j ≤ d)

(T3*) ehx∗
i ej = 0 if ph∗

ij = 0. (0 ≤ h, i, j ≤ d)
The ph

ij are the structure constants of C, as in Definition 2.1, and the ph∗
ij are the structure constants

of C∗. The ei and e∗i are defined by

ei = N−1
d∑

j=0

qi(j)xj (0 ≤ i ≤ d) (30)

and

e∗i = N−1
d∑

j=0

q∗i (j)x
∗
j . (0 ≤ i ≤ d) (31)

Here N is as in (7), the qi(j) are the dual eigenvalues of C as in (12), and the q∗i (j) are the dual
eigenvalues of C∗.

We remark that T is invariant under a reversal of the roles of C and C∗; we will often take
advantage of this fact in what follows.

5 Two Subalgebras of T
In this section we consider the subspaces Span{x0, . . . , xd} and Span{x∗

0, . . . , x
∗
d} of T ; these turn

out to be subalgebras of T which are isomorphic to C and C∗ respectively. We begin with an
observation regarding x0 and x∗

0.

Proposition 5.1 With reference to Definition 4.1, we have x0 = x∗
0 = 1.

Proof. By (T1) we have x0 = x∗
0; write e to denote this element of T . To show that e = 1, observe

by (T2) and Proposition 2.6(ii) that exi = xie = xi for 0 ≤ i ≤ d. Similarly, ex∗
i = x∗

i e = x∗
i for

0 ≤ i ≤ d. Therefore e = 1, since x0, . . . , xd, x
∗
0, . . . , xd generate T . 2

We now turn our attention to a certain map from C to T .

Proposition 5.2 With reference to Definition 4.1, let φ : C → T denote the linear map which
satisfies φ(Xi) = xi for 0 ≤ i ≤ d. Then

(i) φ is a C-algebra homomorphism,
(ii) φ(Ei) = ei. (0 ≤ i ≤ d)

We write C to denote the image of φ.
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Proof. (i) By Proposition 5.1 we have φ(X0) = 1. To see that φ(XY ) = φ(X)φ(Y ) for all X,Y ∈ C,
compare (5) and (T2) and recall that X0, . . . ,Xd is a basis for C.

(ii) Apply φ to (12) and compare the result with (30). 2

After developing some theory concerning T , we will show that φ is injective. For now, however,
we content ourselves with using φ to obtain certain relations in T .

Proposition 5.3 With reference to Definition 4.1,

(i) 1 =
d∑

i=0

ei,

(ii) eiej = δijei, (0 ≤ i, j ≤ d)

(iii) xi =
d∑

j=0

pi(j)ej . (0 ≤ i ≤ d)

Proof. (i) Apply φ to (9) and use Propositions 5.1 and 5.2(ii) .
(ii) Apply φ to (8) and use Proposition 5.2.
(iii) Apply φ to (11) and use Proposition 5.2(ii). 2

Next we focus our attention on C.

Proposition 5.4 With reference to Definition 4.1,
(i) C = Span{x0, . . . , xd},
(ii) C = Span{e0, . . . , ed},
(iii) C is a commutative subalgebra of T .

Proof. (i) This is immediate from the definition of φ.
(ii) This is immediate from Proposition 5.2(ii), since E0, . . . , Ed span C.
(iii) This is immediate from Proposition 5.2(i) and the fact that C is commutative. 2

Reversing the roles of C and C∗ in the last three propositions, we obtain the following three
propositions.

Proposition 5.5 With reference to Definition 4.1, let φ∗ : C∗ → T denote the linear map which
satisfies φ∗(X∗

i ) = x∗
i for 0 ≤ i ≤ d. Then

(i) φ∗ is a C-algebra homomorphism,
(ii) φ∗(E∗

i ) = e∗i . (0 ≤ i ≤ d)
We write C∗ to denote the image of φ∗.

Proposition 5.6 With reference to Definition 4.1,

(i) 1 =
d∑

i=0

e∗i ,

(ii) e∗i e
∗
j = δije

∗
i , (0 ≤ i, j ≤ d)

(iii) x∗
i =

d∑

j=0

p∗i (j)e
∗
j . (0 ≤ i ≤ d)

Proposition 5.7 With reference to Definition 4.1,
(i) C∗ = Span{x∗

0, . . . , x
∗
d},

(ii) C∗ = Span{e∗0, . . . , e∗d},

10



(iii) C∗ is a commutative subalgebra of T .

Proposition 5.8 With reference to Definition 4.1, the algebra T is generated by C ∪ C∗.

Proof. The elements x0, . . . , xd, x
∗
0, . . . , x

∗
d are contained in C ∪ C∗ and generate T . 2

6 An Involution of T
In this section we describe an involution of T which will be useful in some of our later calculations.

Proposition 6.1 With reference to Definition 4.1 and Note 3.8, there exists a unique map † : T →
T such that

(i) †(x + y) = †(x) + †(y), (x, y ∈ T )
(ii) †(αx) = α†(x), (x ∈ T , α ∈ C)
(iii) †(xy) = †(y)†(x), (x, y ∈ T )
(iv) †(xi) = xi′ , (0 ≤ i ≤ d)
(v) †(x∗

i ) = x∗
î
. (0 ≤ i ≤ d)

Moreover,
(vi) †(ei) = ei, (0 ≤ i ≤ d)
(vii) †(e∗i ) = e∗i , (0 ≤ i ≤ d)
(viii) † is an involution.

Proof. By definition T is the quotient T/J , where T is the free associative C-algebra with 1 generated
by x0, . . . , xd, x

∗
0, . . . , x

∗
d and J is the two sided ideal in T generated by the union of the sets

T1 = {x0 − x∗
0},

T2 = {xixj −
d∑

h=0

ph
ijxh | 0 ≤ i, j ≤ d},

T ∗
2 = {x∗

i x
∗
j −

d∑

h=0

ph∗
ij x∗

h | 0 ≤ i, j ≤ d},

T3 = {e∗hxie
∗
j | 0 ≤ h, i, j ≤ d, ph

ij = 0},

and
T ∗

3 = {ehx∗
i ej | 0 ≤ h, i, j ≤ d, ph∗

ij = 0}.

Let ‡ : T → T denote the map which satisfies (i)–(v). To show that ‡ induces a map † : T → T , we
show that J is invariant under ‡. To do this, we show that ‡ permutes the elements of each of the
sets T1–T ∗

3 .
To show that

‡(x0 − x∗
0) = x0 − x∗

0, (32)

observe that ‡(x0) = x0′ = x0 in view of Proposition 2.6(v). Similarly we obtain ‡(x∗
0) = x∗

0; now
(32) follows in view of (i) and (ii).

To show that ‡ permutes the elements of T2, we show that

‡
(

xixj −
d∑

h=0

ph
ijxh

)
= xj′xi′ −

d∑

h=0

ph
j′i′xh. (0 ≤ i, j ≤ d) (33)

11



To do this, let i, j be given and observe by (i) and (ii) that

‡
(

xixj −
d∑

h=0

ph
ijxh

)
= ‡ (xixj) − ‡

(
d∑

h=0

ph
ijxh

)
. (34)

By (iii) and (iv) we have
‡(xixj) = xj′xi′ . (35)

On the other hand, by (i), (ii), (iv), and Definition 2.1(3) we have

‡

(
d∑

h=0

ph
ijxh

)
=

d∑

h=0

ph
ijxh′ . (36)

Using Proposition 2.6(i),(iv) and the fact that ′ is an involution we obtain

d∑

h=0

ph
ijxh′ =

d∑

h=0

ph
j′i′xh. (37)

Now (33) follows by combining (34), (35), (36), and (37).
We have now shown that ‡ permutes the elements of T2. Reversing the roles of C and C∗ in the

above argument, we see that ‡ also permutes the elements of T ∗
2 .

To show that ‡ permutes the elements of T3, we show that for 0 ≤ h, i, j ≤ d we have

‡(e∗hxie
∗
j) = e∗jxi′e

∗
h (38)

and
ph

ij = 0 if and only if pj
i′h = 0. (39)

To show (38), we first show that

‡(ei) = ei. (0 ≤ i ≤ d) (40)

To do this, apply ‡ to (30) and use (i), (ii), and (iv) to obtain

‡(ei) = N−1
d∑

j=0

qi(j)xj′ . (0 ≤ i ≤ d) (41)

Now use (23) to eliminate qi(j) on the right side of (41) and replace j′ with j in the result, obtaining

‡(ei) = N−1
d∑

j=0

qi(j)xj . (0 ≤ i ≤ d) (42)

Compare (42) and (30) to obtain (40). To show (38), combine (40) with (iii) and (iv).
To show (39), use Proposition 2.6(iii) and the fact that ki 6= 0 for 0 ≤ i ≤ d.
We have now shown (38) and (39), and it follows that ‡ permutes the elements of T3. Reversing

the roles of C and C∗ in the above argument, we see that ‡ also permutes the elements of T ∗
3 .

We have now shown that ‡ permutes the elements of the sets T1–T ∗
3 , and it follows that J is

invariant under ‡. Therefore, ‡ induces a map † : T → T which satisfies (i)–(v). We saw in the
above argument that ‡ satisfies (vi); it follows that the induced map † also satisfies (vi). Reversing
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the roles of C and C∗ in (vi), we see that † satisfies (vii) as well. The fact that † is unique follows
from (i)–(v) and the fact that x0, . . . , xd, x

∗
0, . . . , x

∗
d generate T .

To see that † is an involution, observe by (i)–(iii) that the map †2 is a C-algebra homomorphism.
Now use (iv) and the fact that ′ is an involution to find that †2(xi) = xi for 0 ≤ i ≤ d. Similarly, we
have †2(x∗

i ) = x∗
i for 0 ≤ i ≤ d. We conclude that †2 is the identity map, since x0, . . . , xd, x

∗
0, . . . , x

∗
d

generate T . 2

7 Some Reduction Rules

In this section we find several equations which allow one to write long products involving e0 or e∗0
as linear combinations of shorter products; we call these equations reduction rules. We begin with
four such rules.

Proposition 7.1 With reference to Definition 4.1, for 0 ≤ i, j ≤ d we have
(i) e∗jxie

∗
0 = δijxie

∗
0,

(ii) e∗jeie
∗
0 = N−1qi(j)xje

∗
0,

(iii) x∗
jxie

∗
0 = qj(i)xie

∗
0,

(iv) x∗
jeie

∗
0 =

d∑
h=0

ph∗
ij ehe∗0.

Proof. Let i, j be given.
(i) If i 6= j, then pj

i0 = 0 by Proposition 2.6(ii) so e∗jxie
∗
0 = 0 by (T3), as desired.

If i = j, then use Proposition 5.6(i) and the result in the previous case to obtain

xie
∗
0 =

d∑

r=0

e∗rxie
∗
0

= e∗i xie
∗
0,

as desired.
(ii) By (30),

e∗jeie
∗
0 = e∗j

(
N−1

d∑

r=0

qi(r)xr

)
e∗0.

Apply (i) to each term of the sum to obtain the desired result.
(iii) By Proposition 5.6(iii),

x∗
jxie

∗
0 =

(
d∑

r=0

p∗j(r)e
∗
r

)
xie

∗
0.

Now apply (i) to each term of the sum and use Proposition 3.6(ii) to obtain the desired result.
(iv) By (30),

x∗
jeie

∗
0 = x∗

j

(
N−1

d∑

r=0

qi(r)xr

)
e∗0.

Apply (iii) to each term of the sum and use Proposition 5.3(iii) to obtain

x∗
jeie

∗
0 =

d∑

h=0

(
N−1

d∑

r=0

qi(r)qj(r)pr(h)

)
ehe∗0.
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Now use Proposition 3.6(i),(ii), the fact that N = N∗, and (26) to find that the quantity in paren-
theses is ph∗

ij , as desired. 2

We now take advantage of the antiautomorphism † of Proposition 6.1 and our ability to reverse
the roles of C and C∗ to find more reduction rules in T .

Proposition 7.2 With reference to Definition 4.1 and Note 3.8, for 0 ≤ i, j ≤ d we have
(i) e∗0xie

∗
j = δi′je

∗
0xi,

(ii) e∗0eie
∗
j = N−1qi(j)e∗0xj′,

(iii) e∗0xix
∗
j = qj(i)e∗0xi,

(iv) e∗0eix
∗
j =

d∑
h=0

ph∗
iĵ

e∗0eh.

Proof. (i) Apply † to Proposition 7.1(i) and replace i with i′.
(ii) Apply † to Proposition 7.1(ii).
(iii) Apply † to Proposition 7.1(iii), replace i with i′, replace j with ĵ, and use (23) and (25).
(iv) Apply † to Proposition 7.1(iv), replace j with ĵ, and use the fact that ph∗

ij ∈ R. 2

Proposition 7.3 With reference to Definition 4.1, for 0 ≤ i, j ≤ d we have
(i) ejx

∗
i e0 = δijx

∗
i e0,

(ii) eje
∗
i e0 = N−1pi(j)x∗

je0,
(iii) xjx

∗
i e0 = pj(i)x∗

i e0,

(iv) xje
∗
i e0 =

d∑
h=0

ph
ije

∗
he0.

Proof. Reverse the roles of C and C∗ in Proposition 7.1 and use Proposition 3.6(i). 2

Proposition 7.4 With reference to Definition 4.1 and Note 3.8, for 0 ≤ i, j ≤ d we have
(i) e0x

∗
i ej = δ̂ije0x

∗
i ,

(ii) e0e
∗
i ej = N−1pi(j)e0x

∗
ĵ
,

(iii) e0x
∗
i xj = pj(i)e0x

∗
i ,

(iv) e0e
∗
i xj =

d∑
h=0

ph
ij′e0e

∗
h.

Proof. Reverse the roles of C and C∗ in Proposition 7.2 and use Propositions 3.6(i) and 3.7. 2

The next three propositions are useful special cases of the last four propositions.

Proposition 7.5 With reference to Definition 4.1 and Note 3.8, for 0 ≤ j ≤ d we have
(i) e∗je0e

∗
0 = N−1xje

∗
0,

(ii) e∗0e0e
∗
j = N−1e∗0xj′,

(iii) eje
∗
0e0 = N−1x∗

je0,
(iv) e0e

∗
0ej = N−1e0x

∗
ĵ
.

Proof. (i) Set i = 0 in Proposition 7.1(ii) and use (17).
(ii)–(iv) These are similar to the proof of (i). 2
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Proposition 7.6 With reference to Definition 4.1 and Note 3.8, for 0 ≤ j ≤ d we have
(i) x∗

je0e
∗
0 = eje

∗
0,

(ii) e∗0e0x
∗
j = e∗0eĵ,

(iii) xje
∗
0e0 = e∗je0,

(iv) e0e
∗
0xj = e0e

∗
j′.

Proof. (i) Set i = 0 in Proposition 7.1(iv) and use Proposition 2.6(ii).
(ii)–(iv) These are similar to the proof of (i). 2

Proposition 7.7 With reference to Definition 4.1,
(i) e∗0eie

∗
0 = N−1mie

∗
0, (0 ≤ i ≤ d)

(ii) e0e
∗
i e0 = N−1kie0, (0 ≤ i ≤ d)

(iii) e∗0e0e
∗
0 = N−1e∗0,

(iv) e0e
∗
0e0 = N−1e0.

Proof. (i) Set j = 0 in Proposition 7.1(ii), recall that x0 = 1, and use (19).
(ii) Set j = 0 in Proposition 7.3(ii), recall that x∗

0 = 1, and use (18).
(iii) Set i = 0 in (i) and use (17) and (19).
(iv) Set i = 0 in (ii) and use (16) and (18). 2

So far in this section we have found reduction rules for all products of three symbols beginning
or ending with either e0 or e∗0. We conclude this section by finding rules which relate three symbol
products with e0 in the center to three symbol products with e∗0 in the center.

Proposition 7.8 With reference to Definition 4.1 and Note 3.8, for 0 ≤ i, j ≤ d we have
(i) xje

∗
0xi′ = Ne∗je0e

∗
i ,

(ii) xje
∗
0ei = e∗je0x

∗
î
,

(iii) eje
∗
0xi′ = x∗

je0e
∗
i ,

(iv) eje
∗
0ei = N−1x∗

je0x
∗
î
.

Proof. (i) Let i, j be given. By Proposition 7.7(iii) and the fact that e2
0 = e0, we have

xje
∗
0xi′ = Nxje

∗
0e0e0e

∗
0xi′ . (43)

Now use Proposition 7.6(iii) to eliminate xje
∗
0e0 and Proposition 7.6(iv) to eliminate e0e

∗
0xi′ on the

right side of (43), obtaining
xje

∗
0xi′ = Ne∗je0e

∗
i ,

as desired.
(ii) Let i, j be given. By Proposition 7.6(ii) and the fact that ˆ is an involution, we have

xje
∗
0ei = xje

∗
0e0x

∗
î
.

Now apply Proposition 7.6(iii) to xje
∗
0e0 to obtain

xje
∗
0ei = e∗je0x

∗
î
,

as desired.
(iii) Reverse the roles of C and C∗ in (ii) and use Proposition 3.7(i).
(iv) Reverse the roles of C and C∗ in (i); now use Proposition 3.7(ii) and the fact that N = N∗.

2
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8 The Primary Module

With reference to Definition 4.1, let V denote a T -module. By Proposition 5.3(i),(ii),

V =
∑

i

eiV, (direct sum) (44)

where the sum is over all i for which eiV 6= 0. Similarly, by Proposition 5.6(i),(ii),

V =
∑

i

e∗i V, (direct sum) (45)

where the sum is over all i for which e∗i V 6= 0. In this section we describe a T -module for which the
decompositions given in (44) and (45) are especially nice; we call this module the primary module.

Lemma 8.1 With reference to Definition 4.1, suppose V is a T -module.
(i) For all nonzero v ∈ e0V we have

e0e
∗
i v = N−1kiv. (0 ≤ i ≤ d) (46)

(ii) For all nonzero v ∈ e∗0V we have

e∗0eiv = N−1miv. (0 ≤ i ≤ d) (47)

Proof. (i) Apply Proposition 7.7(ii) to v and observe that v = e0v.
(ii) Reverse the roles of C and C∗ in (i) and use Proposition 3.6(iv). 2

Lemma 8.2 With reference to Definition 4.1, suppose V is a T -module.
(i) For all nonzero v ∈ e0V the vectors e∗0v, . . . , e∗dv are linearly independent.
(ii) For all nonzero v ∈ e∗0V the vectors e0v, . . . , edv are linearly independent.

Proof. (i) Use Lemma 8.1(i) and the fact that N−1ki 6= 0 to conclude that e∗i v 6= 0 for 0 ≤ i ≤ d.
Now (i) follows routinely from Proposition 5.6(ii).

(ii) Reverse the roles of C and C∗ in (i). 2

Recall that a T -module V is said to be irreducible if it is nonzero and its only T -submodules
are 0 and V .

Proposition 8.3 With reference to Definition 4.1, suppose V is a T -module; then the following
are equivalent.

(i) dim eiV = 1, (0 ≤ i ≤ d)
(ii) e0V 6= 0 and V is irreducible,
(iii) dim e∗i V = 1, (0 ≤ i ≤ d)
(iv) e∗0V 6= 0 and V is irreducible.

Proof. (i) ⇒ (ii) Clearly e0V 6= 0. To show that V is irreducible, suppose W is a nonzero T -
submodule of V ; we show that W = V .

By (i) and (44), we see that dimV = d+1. Fix a nonzero v ∈ e0V and observe by Lemma 8.2(i)
that the d + 1 vectors e∗0v, . . . , e∗dv form a basis for V . Now fix a nonzero w ∈ W and let α0, . . . , αd

denote complex numbers such that

w =
d∑

i=0

αie
∗
i v. (48)
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Since w 6= 0, there exists j such that αj 6= 0. Apply e∗j to both sides of (48) and use Proposition
5.6(ii) to obtain α−1

j e∗jw = e∗jv; it follows that e∗jv ∈ W . Now use Lemma 8.1(i) and the fact that
N−1ki 6= 0 to conclude that v ∈ W . It follows that {e∗i v | 0 ≤ i ≤ d} ⊆ W , and since e∗0v, . . . , e∗dv
form a basis for V , we have W = V as desired.

(ii) ⇒ (iii) Fix a nonzero v ∈ e0V ; we show that e∗0v, . . . , e∗dv form a basis for V . By Lemma
8.2(i), the vectors e∗0v, . . . , e∗dv are linearly independent. To show that it spans V , we show that
W = Span{e∗i v | 0 ≤ i ≤ d} is a T -submodule of V .

By Proposition 7.3(iv) and the fact that v = e0v, we have

xie
∗
jv =

d∑

h=0

ph
ije

∗
hv. (0 ≤ i, j ≤ d)

It follows that W is closed under x0, . . . , xd. Since W is clearly closed under x∗
0, . . . , x

∗
d and since

the elements x0, . . . , xd, x
∗
0, . . . , x

∗
d generate T , we see that W is a T -submodule of V , as desired.

Since V is irreducible and W 6= 0, it follows that V = W . Therefore, e∗0v, . . . , e∗dv form a basis
for V and (iii) is apparent.

(iii) ⇒ (iv) Reverse the roles of C and C∗ in the proof of (i) ⇒ (ii).
(iv) ⇒ (i) Reverse the roles of C and C∗ in the proof of (ii) ⇒ (iii). 2

Proposition 8.4 With reference to Definition 4.1, there exists a T -module V which satisfies Propo-
sition 8.3(i)–(iv). Moreover, V is unique up to isomorphism of T -modules. We refer to V as the
primary module of T .

Proof. To show existence, we construct a T -module which satisfies Proposition 8.3(i)–(iv). Towards
this end, let V denote a d + 1 dimensional vector space over C and let v0, . . . , vd denote any basis
of V . Let T denote the free associative C-algebra with 1 generated by x0, . . . , xd, x

∗
0, . . . , x

∗
d. Give

V the structure of a T -module such that

xivj = pi(j)vj (0 ≤ i, j ≤ d) (49)

and

x∗
i vj =

d∑

h=0

ph∗
ij vh. (0 ≤ i, j ≤ d) (50)

To show that V is a T -module, we show that each of the relations of Definition 4.1(T1)–(T3*) hold
on V . To do this, it is helpful to consider a second basis of V . Set

v∗i =
d∑

j=0

pi(j)vj (0 ≤ i ≤ d) (51)

and observe by (15) that

vi = N−1
d∑

j=0

qi(j)v∗j . (0 ≤ i ≤ d) (52)

By (52), the vectors v∗0 , . . . , v
∗
d form a basis for V . We claim that

x∗
i v

∗
j = qi(j)v∗j (0 ≤ i, j ≤ d) (53)
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and

xiv
∗
j =

d∑

h=0

ph
ijv

∗
h. (0 ≤ i, j ≤ d) (54)

To obtain (53), evaluate the left side using (51), (50), (52), Proposition 3.6(ii), (27), and (14) in
that order. To obtain (54), use (51), (49), (52) and (26).

Combining (30), (49), and (15) we find

eivj = δijvj . (0 ≤ i, j ≤ d) (55)

Reversing the roles of C and C∗ in (55), we obtain

e∗i v
∗
j = δijv

∗
j . (0 ≤ i, j ≤ d) (56)

We now consider (T1)–(T3*).
(T1) We show that

(x0 − x∗
0)v = 0. (v ∈ V ) (57)

Towards this end, set i = 0 in (49) and use (16) to see that x0 acts as the identity on V . Reversing
the roles of C and C∗, we find that x∗

0 also acts as the identity on V , and (57) follows.
(T2) Let i, j be given with 0 ≤ i, j ≤ d; we show that

(
xixj −

d∑

h=0

ph
ijxh

)
v = 0. (v ∈ V ) (58)

To do this, observe that for 0 ≤ r ≤ d we have

xixjvr = pi(r)pj(r)vr (by (49))

=
d∑

h=0

ph
ijph(r)vr (by (27))

=
d∑

h=0

ph
ijxhvr. (by (49))

Now (58) follows.
(T2*) Let i, j be given with 0 ≤ i, j ≤ d; we show that

(
x∗

i x
∗
j −

d∑

h=0

ph∗
ij x∗

h

)
v = 0. (v ∈ V ) (59)

To do this, reverse the roles of C and C∗ in the proof of (T2) and use Proposition 3.6(ii).
(T3) Given h, i, j such that ph

ij = 0, we show that

e∗hxie
∗
jv = 0. (v ∈ V ) (60)

To do this, observe that for 0 ≤ r ≤ d we have

e∗hxie
∗
jv

∗
r = δjre

∗
hxiv

∗
r (by (56))

= δjre
∗
h

d∑
s=0

ph
irv

∗
s (by (54))

= δjrp
h
irv

∗
h (by (56))

= 0.
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Now (60) follows.
(T3*) Given h, i, j such that ph∗

ij = 0, we show that

ehx∗
i ejv = 0. (v ∈ V ) (61)

To do this, reverse the roles of C and C∗ in the proof of (T3).
We have now shown that (T1)–(T3*) hold on V , so V is T -module. Next we show that V

satisfies Proposition 8.3(i)–(iv). By (56) we see that for 0 ≤ i ≤ d, the vector v∗i is a basis for e∗i V ,
so dim e∗i V = 1. In particular, V satisfies Proposition 8.3(iii), so V satisfies Proposition 8.3(i)–(iv),
as desired.

Concerning the uniqueness of V , suppose W is a T -module which satisfies Proposition 8.3(i)–
(iv). We show that V and W are T -module isomorphic. Towards this end, fix a nonzero w ∈ e∗0W
and observe by Lemma 8.2(ii), (44), and Proposition 8.3(i) that e0w, . . . , edw form a basis for W .
Using Proposition 5.3(ii),(iii) we obtain

xiejw = pi(j)ejw. (0 ≤ i, j ≤ d) (62)

Using Proposition 7.1(iv) and the fact that w = e∗0w, we obtain

x∗
i ejw =

d∑

h=0

ph∗
ij ehw. (0 ≤ i, j ≤ d) (63)

Comparing (62) with (49) and (63) with (50) we see that the linear map ϕ : W → V which has
ϕ(eiw) = vi for 0 ≤ i ≤ d is a T -module isomorphism, as desired. 2

9 Two Bases for the Primary Module

In this section we describe two bases for the primary module with respect to which the action of
the generators xi and x∗

i of T is especially nice.

Proposition 9.1 With reference to Definition 4.1, let V denote the primary module for T . Then
for v0, . . . , vd in V , the following are equivalent.

(i) There exists a nonzero v ∈ e∗0V such that

vi = eiv. (0 ≤ i ≤ d) (64)

(ii) At least one of v0, . . . , vd is nonzero, vi ∈ eiV for 0 ≤ i ≤ d, and
d∑

i=0
vi ∈ e∗0V .

Moreover, suppose (i) and (ii) hold. Then v0, . . . , vd is a basis for V and

v =
d∑

i=0

vi. (65)

Proof. (i) ⇒ (ii) The vectors v0, . . . , vd are linearly independent by Lemma 8.2(ii) so they are
nonzero. Observe that vi = eiv ∈ eiV for 0 ≤ i ≤ d. To obtain the last assertion, it suffices to prove
(65). To obtain (65), sum (64) over i and use Proposition 5.3(i).

(ii) ⇒ (i) Let v be as in (65) and observe that v ∈ e∗0V by hypothesis. To see that (64) holds,
apply ei to (65) and use Proposition 5.3(ii) and the fact that vi ∈ eiV for 0 ≤ i ≤ d. Finally, observe
that v 6= 0; otherwise v0, . . . , vd are all zero by (64), which contradicts our hypothesis.
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Now suppose (i) and (ii) hold. We have observed that v0, . . . , vd are linearly independent, and
they span V since dimV = d + 1. Therefore v0, . . . , vd forms a basis for V , as desired. We saw in
the proof of (i) ⇒ (ii) that (65) holds. 2

Motivated by Proposition 9.1, we make the following definition.

Definition 9.2 With reference to Definition 4.1, let V denote the primary module for T . By a
standard basis of V we mean a sequence v0, . . . , vd of vectors in V which satisfies Proposition
9.1(i),(ii).

Proposition 9.3 With reference to Definition 4.1, let V denote the primary module for T and sup-
pose v0, . . . , vd is a standard basis of V . Then for w0, . . . , wd in V , the following are equivalent.

(i) There exists a nonzero α ∈ C such that vi = αwi for 0 ≤ i ≤ d.
(ii) w0, . . . , wd is a standard basis of V .

Proof. (i) ⇒ (ii) This is clear from Proposition 9.1(ii).
(ii) ⇒ (i) By Proposition 9.1(i) there exists a nonzero v ∈ e∗0V such that vi = eiv for 0 ≤ i ≤ d.

Similarly, there exists a nonzero w ∈ e∗0V such that wi = eiw for 0 ≤ i ≤ d. Recall that dim e∗0V = 1
by Proposition 8.3(iii), so there exists a nonzero α ∈ C such that v = αw. Combining the above
information, we find that vi = αwi for 0 ≤ i ≤ d, as desired. 2

In view of Proposition 9.3, we sometimes abuse language by referring to “the” standard basis of
V .

We now describe how the elements xi, x∗
i , ei, and e∗i of T act on the primary module with respect

to the standard basis.

Proposition 9.4 With reference to Definition 4.1, let V denote the primary module for T and let
v0, . . . , vd denote a standard basis of V . Then for 0 ≤ i, j ≤ d we have

(i) eivj = δijvj,
(ii) xivj = pi(j)vj ,

(iii) e∗i vj = N−1qj(i)
d∑

r=0
pi(r)vr,

(iv) x∗
i vj =

d∑
r=0

pr∗
ij vr.

Proof. (i) This is immediate from (64) and Proposition 5.3(ii).
(ii) Use Proposition 5.3(iii) to eliminate xi on the left and use (i) to evaluate the result.
(iii) By Proposition 9.1(i) there exists a nonzero v ∈ e∗0V such that vi = eiv for 0 ≤ i ≤ d. By

Proposition 5.6(ii) we have v = e∗0v. Therefore,

e∗i vj = e∗i ejv

= e∗i eje
∗
0v

= N−1qj(i)xiv (by Proposition 7.1(ii))

= N−1qj(i)
d∑

r=0
pi(r)erv (by Proposition 5.3(iii))

= N−1qj(i)
d∑

r=0
pi(r)vr

20



as desired.
(iv) By Proposition 9.1(i) there exists a nonzero v ∈ e∗0V such that vi = eiv for 0 ≤ i ≤ d. By

Proposition 5.6(ii) we have v = e∗0v. Now apply both sides of Proposition 7.1(iv) to v and use the
above information to evaluate the result. 2

Reversing the roles of C and C∗ in the above propositions, we obtain the following propositions.

Proposition 9.5 With reference to Definition 4.1, let V denote the primary module for T . Then
for v∗0 , . . . , v

∗
d in V , the following are equivalent.

(i) There exists a nonzero v ∈ e0V such that

v∗i = e∗i v. (0 ≤ i ≤ d) (66)

(ii) At least one of v∗0, . . . , v
∗
d is nonzero, v∗i ∈ e∗i V for 0 ≤ i ≤ d, and

d∑
i=0

v∗i ∈ e0V .

Moreover, suppose (i) and (ii) hold. Then v∗0 , . . . , v
∗
d is a basis for V and

v =
d∑

i=0

v∗i . (67)

Definition 9.6 With reference to Definition 4.1, let V denote the primary module for T . By a
dual standard basis of V we mean a sequence v∗0, . . . , v

∗
d of vectors in V which satisfies Proposition

9.5(i),(ii).

Proposition 9.7 With reference to Definition 4.1, let V denote the primary module for T and
suppose v∗0, . . . , v

∗
d is a dual standard basis of V . Then for w∗

0, . . . , w
∗
d in V , the following are

equivalent.
(i) There exists a nonzero α ∈ C such that v∗i = αw∗

i for 0 ≤ i ≤ d.
(ii) w∗

0, . . . , w
∗
d is a dual standard basis of V .

Proposition 9.8 With reference to Definition 4.1, let V denote the primary module for T and let
v∗0 , . . . , v

∗
d denote a dual standard basis of V . Then for 0 ≤ i, j ≤ d we have

(i) e∗i v
∗
j = δijv

∗
j ,

(ii) x∗
i v

∗
j = p∗i (j)v

∗
j ,

(iii) eiv
∗
j = N−1q∗j (i)

d∑
r=0

p∗i (r)v
∗
r ,

(iv) xiv
∗
j =

d∑
r=0

pr
ijv

∗
r .

We conclude our discussion of the standard and dual standard bases by determining the transition
matrices between them.

Proposition 9.9 With reference to Definition 4.1, let V denote the primary module for T and let
v0, . . . , vd denote a standard basis of V . Then there exists a dual standard basis v∗0 , . . . , v

∗
d of V such

that

v∗i =
d∑

j=0

pi(j)vj (0 ≤ i ≤ d) (68)

and

vi = N−1
d∑

j=0

qi(j)v∗j . (0 ≤ i ≤ d) (69)
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Proof. Write v∗i = Ne∗i v0 for 0 ≤ i ≤ d. Then Proposition 9.5(i) holds with v = Nv0 so v∗0 , . . . , v
∗
d

is a dual standard basis of V . To show (68), set j = 0 in Proposition 9.4(iii) and use (17). To show
(69), use (68) and (15). 2

10 Two Subalgebras of T , Revisited

In this section we return our attention to the subalgebras C and C∗ of T which are discussed in
section 5.

Lemma 10.1 With reference to Definition 4.1, the elements x0, . . . , xd, x
∗
1, . . . , x

∗
d of T are linearly

independent. (Recall from Definition 4.1(T1) that x0 = x∗
0.)

Proof. Suppose complex numbers α0, . . . , αd, α
∗
1, . . . , α

∗
d are given such that

α0x0 +
d∑

i=1

αixi +
d∑

i=1

α∗
i x

∗
i = 0. (70)

We show that α0, . . . , αd, α
∗
1, . . . , α

∗
d are all zero. Towards this end, we first show that αr = 0 for

1 ≤ r ≤ d. Let r be given and multiply each side of (70) on the left by e∗r and on the right by e∗0.
Use Propositions 5.6(ii), 5.7(iii), and 7.1(i) to simplify the result, obtaining

αrxre
∗
0 = 0. (71)

We claim that xre
∗
0 6= 0. To see this, let V denote the primary module for T and let v∗0 , . . . , v

∗
d

denote a dual standard basis for V . Set j = 0 in Proposition 9.8(iv) and use Proposition 2.6(ii) to
evaluate the result, obtaining xrv

∗
0 = v∗r . By Proposition 9.8(i) we have e∗0v

∗
0 = v∗0 , and it follows

that xre
∗
0v

∗
0 = v∗r . Since v∗r 6= 0, we must have xre

∗
0 6= 0, as claimed. Combining this with (71), we

find that αr = 0.
Reversing the roles of C and C∗ in the above argument, we find that α∗

1, . . . , α
∗
d are zero; now

(70) reduces to α0x0 = 0. Setting i = j = 0 in Proposition 9.8(iv) and using Proposition 2.6(ii) to
simplify the result, we find that x0v

∗
0 = v∗0 . Therefore x0 6= 0 and it follows that α0 = 0, as desired.

2

Proposition 10.2 With reference to Definition 4.1,
(i) the map φ of Proposition 5.2 is injective,
(ii) dim C = d + 1,
(iii) x0, . . . , xd is a basis of C,
(iv) e0, . . . , ed is a basis of C.

Proof. (i) This is immediate from Lemma 10.1.
(ii) This is immediate from (i) and the fact that dimC = d + 1.
(iii) This is immediate from (ii) and Proposition 5.4(i).
(iv) This is immediate from (ii) and Proposition 5.4(ii). 2

Proposition 10.3 With reference to Definition 4.1,
(i) the map φ∗ of Proposition 5.5 is injective,
(ii) dim C∗ = d + 1,
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(iii) x∗
0, . . . , x

∗
d is a basis of C∗,

(iv) e∗0, . . . , e
∗
d is a basis of C∗.

Proof. Reverse the roles of C and C∗ in Proposition 10.2. 2

Proposition 10.4 With reference to Definition 4.1, we have C ∩ C∗ = Span{1}.

Proof. Recall from Proposition 5.1 that 1 = x0 ∈ C and 1 = x∗
0 ∈ C∗, so Span{1} ⊆ C ∩ C∗. The

fact that C ∩ C∗ ⊆ Span{1} is immediate from Propositions 10.2(iii), 10.3(iii), and Lemma 10.1. 2

11 A Central Idempotent of T
We now turn our attention to the algebraic structure of T . In this section we introduce an element
u0 of T and we use the reduction rules of section 7 to show that u0 is a central idempotent. We
begin with another relation in T .

Proposition 11.1 With reference to Definition 4.1,

N

d∑

r=0

k−1
r e∗re0e

∗
r = N

d∑

j=0

k∗−1
j eje

∗
0ej . (72)

We write u0 to denote this element of T .

Proof. We have

N
d∑

j=0
k∗−1

j eje
∗
0ej =

d∑
j=0

k∗−1
j x∗

je0x
∗
ĵ

(by Proposition 7.8(iv))

=
d∑

j=0

d∑
r=0

d∑
s=0

k∗−1
j p∗

ĵ
(s)p∗j (r)e

∗
re0e

∗
s (by Proposition 5.6(iii))

=
d∑

j=0

d∑
r=0

d∑
s=0

k∗−1
j p∗j(s)p

∗
j (r)e

∗
re0e

∗
s (by Proposition 3.7(i) and (22))

=
d∑

r=0

d∑
s=0

m∗−1
s

d∑
j=0

q∗s(j)p∗j (r)e
∗
re0e

∗
s (by (20))

= N
d∑

r=0
m∗−1

r e∗re0e
∗
r (by (15))

= N
d∑

r=0
k−1

r e∗re0e
∗
r, (by Proposition 3.6(iii))

as desired. 2

Next we consider certain products involving u0.

Proposition 11.2 With reference to Definition 4.1, for 0 ≤ i ≤ d we have
(i) eiu0 = Nk∗−1

i eie
∗
0ei,

(ii) u0ei = Nk∗−1
i eie

∗
0ei,

(iii) e∗i u0 = Nk−1
i e∗i e0e

∗
i ,
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(iv) u0e
∗
i = Nk−1

i e∗i e0e
∗
i .

Proof. (i), (ii) Use the right side of (72) to eliminate u0 and use Proposition 5.3(ii) to simplify the
result.

(iii), (iv) Use the left side of (72) to eliminate u0 and use Proposition 5.6(ii) to simplify the
result. 2

The following corollary of Proposition 11.2 will be useful later on.

Corollary 11.3 With reference to Definition 4.1,
(i) e0 = e0u0,
(ii) e∗0 = e∗0u0,
(iii) u0 6= 0.

Proof. (i) Set i = 0 in Proposition 11.2(i) and use (16), (18) and Proposition 7.7(iv) to evaluate the
result.

(ii) This is similar to the proof (i).
(iii) This is immediate from (i) and Proposition 10.2(iv). 2

Next we show that u0 is a central idempotent of T .

Proposition 11.4 With reference to Definition 4.1,
(i) u0t = tu0, (t ∈ T )
(ii) u2

0 = u0.
In other words, u0 is a central idempotent of T .

Proof. (i) By Proposition 11.2, the element u0 commutes with the elements e0, . . . , ed, e
∗
0, . . . , e

∗
d.

These elements generate T by Propositions 5.4(ii), 5.7(ii), and 5.8, so (i) holds.
(ii) We have

u2
0 = u0

(
N

d∑
i=0

k−1
i e∗i e0e

∗
i

)
(by (72))

= N2
d∑

i=0
k−2

i e∗i e0e
∗
i e0e

∗
i (by Proposition 11.2(iv))

= N
d∑

i=0
k−1

i e∗i e0e
∗
i (by Proposition 7.7(ii))

= u0,

as desired. 2

We conclude this section by finding a decomposition of T as a direct sum of two sided ideals.
We omit the proof, which is routine.

Proposition 11.5 With reference to Definition 4.1,
(i) T u0 is a nonzero two sided ideal of T ,
(ii) T (1 − u0) is a two sided ideal of T ,
(iii) T = T u0 + T (1 − u0) and the sum is direct.

We remark that in the introduction we wrote T0 and T1 to denote the ideals T u0 and T (1− u0)
respectively.
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12 The Ideal T u0

In view of Proposition 11.5, we now restrict our attention to the ideal T u0. By Proposition 11.4(ii),
the ideal T u0 is a C-algebra with identity u0; in this section we show that T u0 is C-algebra iso-
morphic to the full matrix algebra Md+1(C). We begin by describing several ways to recognize
T u0.

Proposition 12.1 With reference to Definition 4.1, and using the notation of Propositions 5.2 and
5.5, the vector spaces Ce∗0C, C∗e0C∗, T e0T and T e∗0T are all equal to T u0.

Proof. First observe that

Ce∗0C = Span{xje
∗
0xi′ | 0 ≤ i, j ≤ d} (by Proposition 5.4(i))

= Span{e∗je0e
∗
i | 0 ≤ i, j ≤ d} (by Proposition 7.8(i))

= C∗e0C∗. (by Proposition 5.7(ii))

For the rest of the proof we write T0 = Ce∗0C = C∗e0C∗.
By Proposition 5.8 the set C∪C∗ generates T , so we have T T0 ⊆ T0 and T0T ⊆ T0; it follows that

T0 is a two sided ideal of T . To see that T0 = T e0T , first observe that by construction T0 ⊆ T e0T .
To obtain the reverse inclusion, observe that e0 ∈ T0, so

T e0T ⊆ T T0T
⊆ T0.

Therefore, T0 = T e0T .
To see that T0 = T e∗0T , reverse the roles of C and C∗ in the above argument.
It remains to show that T0 = T u0. To do this, use Corollary 11.3(i) to find that e0 ∈ T u0, and

conclude that T0 = T e0T ⊆ T u0. From the form of u0 in (72) we see that u0 ∈ C∗e0C∗ = T0, so
T u0 ⊆ T0. We now have T0 = Tu0, as desired. 2

In the next proposition we present a basis for T u0 and compute products of these basis elements.

Proposition 12.2 With reference to Definition 4.1, write

Υij = Neie
∗
0ej . (0 ≤ i, j ≤ d) (73)

Then
(i) {Υij | 0 ≤ i, j ≤ d} is a basis for T u0,
(ii) ΥijΥrs = δjrmjΥis. (0 ≤ i, j, r, s ≤ d)

Proof. (i) We first show that Υij 6= 0 for 0 ≤ i, j ≤ d. Towards this end, let i, j be given and use
Proposition 7.7(i) and the fact that e∗20 = e∗0 to obtain

e∗0Υije
∗
0 = N−1mimje

∗
0. (0 ≤ i, j ≤ d)

Since N−1mimj 6= 0 and e∗0 6= 0, we conclude that Υij 6= 0. It is now routine using Proposition
5.3(ii) to show that {Υij | 0 ≤ i, j ≤ d} is linearly independent. To see that these elements span
T u0, observe that

Span{Υij | 0 ≤ i, j ≤ d} = Span{eie
∗
0ej | 0 ≤ i, j ≤ d} (by (73))

= Ce∗0C (by Proposition 5.4(ii))

= T u0, (by Proposition 12.1)
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as desired.
(ii) Use (73) and Proposition 5.3(ii) to obtain

ΥijΥrs = δjrN
2eie

∗
0eje

∗
0es. (0 ≤ i, j, r, s ≤ d)

Now use Proposition 7.7(i) to eliminate e∗0eje
∗
0 and compare the result with the right side of (73). 2

We are now ready to describe the C-algebra structure of T u0.

Theorem 12.3 With reference to Definition 4.1, there exists a C-algebra isomorphism ρ : T u0 →
Md+1(C) such that

ρ(Υij) = mjeij. (0 ≤ i, j ≤ d) (74)

Proof. By Proposition 12.2(i), there exists a unique isomorphism of vector spaces ρ : T u0 →
Md+1(C) which satisfies (74). By Proposition 12.2(ii), this map is an isomorphism of C-algebras. 2

Reversing the roles of C and C∗ in the previous two results, we obtain the following.

Proposition 12.4 With reference to Definition 4.1, write

Υ∗
ij = Ne∗i e0e

∗
j . (0 ≤ i, j ≤ d) (75)

Then
(i) {Υ∗

ij | 0 ≤ i, j ≤ d} is a basis for T u0,
(ii) Υ∗

ijΥ
∗
rs = δjrm

∗
jΥ

∗
is. (0 ≤ i, j, r, s ≤ d)

Theorem 12.5 With reference to Definition 4.1, there exists a C-algebra isomorphism ρ∗ : T u0 →
Md+1(C) such that

ρ∗(Υ∗
ij) = m∗

jeij . (0 ≤ i, j ≤ d) (76)

13 The Ideal T u0 and the Primary Module

In this section we consider the connection between the ideal T u0 and the primary module. We begin
by describing the action of the basis elements Υij of Proposition 12.2 on the primary module.

Proposition 13.1 With reference to Definition 4.1, let V denote the primary module for T and let
v0, . . . , vd denote a standard basis of V . Then the elements Υij of (73) satisfy

Υijvr = δjrmjvi. (0 ≤ i, j, r ≤ d) (77)

Proof. We have

Υijvr = Neie
∗
0ejvr (by (73))

= δjrNeie
∗
0vj (by Proposition 9.4(i))

= δjrmjei

d∑
s=0

vs (by Proposition 9.4(iii), (16), and (19))

= δjrmjvi, (by Proposition 9.4(i))

as desired. 2

Reversing the roles of C and C∗ in the previous proposition, we obtain the following.
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Proposition 13.2 With reference to Definition 4.1, let V denote the primary module for T and let
v∗0 , . . . , v

∗
d denote a dual standard basis of V . Then the elements Υ∗

ij of (75) satisfy

Υ∗
ijv

∗
r = δjrm

∗
jv

∗
i . (0 ≤ i, j, r ≤ d) (78)

Before stating the main theorem of this section, we recall two definitions.

Definition 13.3 With reference to Definition 4.1, let V denote the primary module for T . We
write End(V ) to denote the C-algebra of all linear maps from V to V . For 0 ≤ i, j ≤ d, we write
fij to denote the element of End(V ) which has

fij(vr) = δjrvi, (0 ≤ r ≤ d) (79)

where v0, . . . , vd is a standard basis of V . We observe that {fij | 0 ≤ i, j ≤ d} is a basis for End(V ).
Similarly, for 0 ≤ i, j ≤ d we write f∗

ij to denote the element of End(V ) which has

f∗
ij(v

∗
r ) = δjrv

∗
i , (0 ≤ r ≤ d) (80)

where v∗0, . . . , v
∗
d is a dual standard basis of V . We observe that {f∗

ij | 0 ≤ i, j ≤ d} is a basis for
End(V ).

Definition 13.4 With reference to Definition 4.1, let V denote the primary module for T . Since
V is a T -module, there exists a natural C-algebra homomorphism from T to End(V ). We write η
to denote this map, and we observe that

η(t)(v) = tv. (t ∈ T , v ∈ V ) (81)

We conclude this section by describing the action of η on the ideals T u0 and T (1 − u0).

Theorem 13.5 With reference to Definition 4.1, let V denote the primary module for T and let
η : T → End(V ) denote the map of Definition 13.4. Then the restriction of η to the ideal T u0 is
an isomorphism of C-algebras and ker η = T (1 − u0). Moreover,

η(Υij) = mjfij (0 ≤ i, j ≤ d) (82)

and
η(Υ∗

ij) = m∗
jf

∗
ij. (0 ≤ i, j ≤ d) (83)

Proof. Line (82) is immediate from (77), (79), and (81); line (83) is immediate from (78), (80),
and (81). Let η0 denote the restriction of η to T u0 and observe that η0 is a homomorphism of
C-algebras. Combining (82), the fact that {Υij | 0 ≤ i, j ≤ d} is a basis for T u0, and the fact that
{fij | 0 ≤ i, j ≤ d} is a basis for End(V ), we see that η0 is a bijection. It follows that η0 is an
isomorphism of C-algebras. It is routine to show ker η = T (1 − u0). 2

14 Modules for T
In this section we investigate arbitrary T -modules. We begin by using the central idempotent u0

to write an arbitrary T -module as a direct sum of two submodules. We omit the proof, which is
routine.
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Proposition 14.1 With reference to Definition 4.1, suppose W is a T -module. Then
(i) u0W is a T -submodule of W ,
(ii) (1 − u0)W is a T -submodule of W ,
(iii) W = u0W + (1 − u0)W and the sum is direct.

In the next proposition we give several ways of recognizing u0W .

Proposition 14.2 With reference to Definition 4.1, suppose W is a T -module. Then each of
T e0W , T e∗0W , Ce∗0W , and C∗e0W is equal to u0W .

Proof. Observe that u0 ∈ C∗e0C∗ by (72), and C∗W ⊆ W , so u0W ⊆ C∗e0W . Clearly C∗e0W ⊆
T e0W . Recall e0 = e0u0 by Corollary 11.3(i) and recall that u0 is central in T , so

T e0W = T e0u0W

⊆ u0W.

From these remarks, we see that u0W , C∗e0W , and T e0W are all equal. Reversing the roles of C
and C∗ in the above argument, we see that u0W , Ce∗0W , and T e∗0W are all equal. 2

Now we relate u0W to the primary module.

Proposition 14.3 With reference to Definition 4.1, suppose W is a T -module. For any irreducible
T -submodule V of W , the following are equivalent.

(i) V ⊆ u0W .
(ii) V is T -module isomorphic to the primary module.

Proof. (i) ⇒ (ii) In view of Propositions 8.3(ii) and 8.4, we need only show that e0V 6= 0. To do
this, observe that

V = u0V

⊆ T e0T V (by (72))

⊆ T e0V, (since V is a T -module)

so e0V 6= 0, as desired.
(ii) ⇒ (i) Recall that u0 acts as the identity on the primary module so V = u0V ⊆ u0W . 2

With reference to Definition 4.1, suppose W is a T -module. Since u0 acts as the identity on
u0W , we may view u0W as a module for T u0. We showed in Theorem 12.3 that T u0 is C-algebra
isomorphic to Md+1(C), so u0W is completely reducible. We conclude the paper by mentioning a
few consequences of these ideas.

Proposition 14.4 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
For every T -submodule A of u0W there exists a T -submodule B of u0W such that

u0W = A + B. (direct sum)

Proposition 14.5 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then there exist a nonnegative integer m and T -submodules U1, . . . , Um of u0W such that each Ui

is T -module isomorphic to the primary module and such that

u0W =
m∑

i=1

Ui. (direct sum) (84)
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Proposition 14.6 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then u0W =

∑
U , where the sum is over all T -submodules U of W such that U is isomorphic to

the primary module.

Proof. This is immediate from Propositions 14.3 and 14.5. 2

Proposition 14.7 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then

dim e0W = dim e∗0W, (85)

and this quantity is equal to the multiplicity with which the primary module appears in u0W .

Proof. We show that both sides of (85) are equal to the multiplicity with which the primary module
appears in u0W . To do this, first observe that this multiplicity is given by m in (84). Now apply e0

to both sides of (84) and use Corollary 11.3(i) to obtain

e0W =
m∑

i=1

e0Ui. (direct sum)

It follows that

dim e0W =
m∑

i=1
dim e0Ui

=
m∑

i=1
1 (by Proposition 8.3(i))

= m.

Reversing the roles of C and C∗ in the above argument, we find that dim e∗0W = m, as desired. 2
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