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Abstract

In [41] Terwilliger considered the C-algebra generated by a given Bose Mesner algebra M and the asso-
ciated dual Bose Mesner algebra M*. This algebra is now known as the Terwilliger algebra and is usually
denoted by T'. Terwilliger showed that each vanishing intersection number and Krein parameter of M gives
rise to a relation on certain generators of T'. These relations determine much of the structure of 7', though
not all of it in general. To illuminate the role these relations play, we consider a certain generalization 7 of
T. To go from T to 7, we replace M and M™* with a pair of dual character algebras C' and C*. We define 7
by generators and relations; intuitively 7 is the associative C-algebra with identity generated by C' and C*
subject to the analogues of Terwilliger’s relations. 7 is infinite dimensional and noncommutative in general.
We construct an irreducible 7-module which we call the primary module; the dimension of this module is
the same as that of C' and C*. We find two bases of the primary module; one diagonalizes C' and the other
diagonalizes C*. We compute the action of the generators of 7 on these bases. We show 7 is a direct sum of
two sided ideals 7y and 77 with 7y isomorphic to a full matrix algebra. We show that the irreducible module
associated with 7 is isomorphic to the primary module. We compute the central primitive idempotent of 7°
associated with 7p in terms of the generators of 7.

1 Introduction

There is an object in algebraic combinatorics known as a Bose Mesner algebra. There are several
equivalent definitions [9, 17, 32|, but one that is particularly compact is the following [17, 32]. Let
n denote a positive integer, let M, (C) denote the C-algebra of all n by n matrices with complex
entries, and let J € M, (C) denote the matrix whose entries are all 1. By a Bose Mesner algebra
of order n we mean a commutative subalgebra M of M, (C) which contains J and which is closed
under transposition and entrywise multiplication. The vector space M together with entrywise
multiplication is a commutative C-algebra with identity J; we refer to this algebra as M’. To avoid
dealing directly with the entrywise product, it is convenient to consider a certain subalgebra M*
of M, (C) which is isomorphic to M’; this algebra is constructed as follows. For all X € M, let
p(X) denote the diagonal matrix in M, (C) whose iith entry is equal to X1, for 1 < i < n. For
example, p(J) = I, the identity matrix in M,,(C). Observe that the map p : M — M, (C) is linear



and let M* denote the image of M under p. Since M is closed under entrywise multiplication and
contains J, we see that M™ is closed under ordinary matrix multiplication and contains I. It follows
that M* is a subalgebra of M, (C), and one can show that p : M’ — M* is an isomorphism of C-
algebras [41]. The subalgebra T of M,,(C) generated by M and M* is known as the subconstituent
algebra or the Terwilliger algebra [41]. It has been used to study P- and @Q-polynomial association
schemes [18, 41], group association schemes [8, 10], strongly regular graphs [44], Doob schemes [40],
and association schemes over the Galois rings of characteristic four [31]. Other work involving the
Terwilliger algebra can be found in [19, 20, 22, 24, 23, 21, 25, 27, 28, 29, 42, 43].

In this paper we introduce a generalization 7 of the Terwilliger algebra. We define 7 by gen-
erators and relations; in general, the result is infinite dimensional and noncommutative. Before
describing 7', we set the stage by saying a bit more about M, M*, and T.

The algebras M and M™* each have two bases of interest to us. To obtain one basis of M, observe
that M’ is semisimple, since it contains no nonzero nilpotent elements [37, Theorem 3.9]. Since M’
is also commutative, it has a basis Ag, ..., Ay consisting of mutually orthogonal idempotents. These
matrices have all entries equal to zero or one and their sum is J. Moreover, for 0 < ¢ < d there exists
a positive integer k; such that each row and column of A; contains exactly k; ones; this can be shown
using the fact that A; commutes with J. By definition of M we have I € M and it follows that I is
one of Ay, ..., Ag; by convention we take Ay = I. We define E = p(A4;) for 0 < i < d and we observe
that Ef,..., E} is a basis of mutually orthogonal idempotents of M*. To obtain the other basis of
M, we show that M is semisimple. Observe that M is closed under complex conjugation, since it
has a basis Ay, ..., Ay whose entries are all real. By definition M is closed under transposition, so
it is closed under the conjugate transpose. It follows that M is semisimple [26, p. 157]. Since M
is also commutative, it has a basis Ey, ..., F4 consisting of mutually orthogonal idempotents. The
matrix n~'J is a rank one idempotent and so must be among Ey, ..., E4; by convention we take
Ey =n~'J. We define A} = np(E;) for 0 < i < d. Observe that A, ..., A% is a basis for M* and
that Aj = 1.

The inspiration for 7 is a result of Terwilliger concerning certain triple products in 7'; to describe
this result, we recall two sets of parameters. Since Ay, ..., Aq is a basis for M, there exist scalars
p?j such that

d
A Ay = plAy; (0<i,j<d
h=0

these are known as the intersection numbers of M. Similarly, there exist scalars plhj* such that
d
h ..
A A =57 pleas; (0<i,j < d)
=0

these are the known as the intersection numbers of M* and also as the Krein parameters of M.
Terwilliger showed in [41] that for 0 < h,4,j < d we have

EjAE; =0 iff Pl =0
and
EyA{E; =0 iff P =0.
We now describe the algebra 7. Let C' denote an associative C-algebra with a basis g, ..., x4
such that ;
Tixj = ZPZJEh- (0<i,j<d (1)
h=0



Observe that C' is isomorphic to M; in fact, the linear map from M to C' which maps A; to x; for
0 <4 < d is an isomorphism of algebras. We write e; to denote the image of E; under this map and

we observe that eg, ..., eq is a basis of C' consisting of mutually orthogonal idempotents. Similarly,
let C* denote an associative C-algebra with a basis z), ..., z}; such that
d
wizy =Y pla;. (0<1i,j <d) (2)
h=0

Then C* is isomorphic to M* and the linear map from M* to C* which maps A} to z} for 0 <7 <d
is an isomorphism of algebras. We write e to denote the image of E under this map and we observe

that e, ..., e} is a basis of ™ consisting of mutually orthogonal idempotents. We define 7 to be
the associative C-algebra with identity generated by xo,..., x4, 2g,..., 2} subject to the relations
(1)7 (2)7 Lo = Tp,

ehie; =0 if pi; =0, (0 < hyi,j <d) (3)
and

enrie; =0 if Pl =0. (0 < h,i,j <d) (4)

The element z¢ = x{) is the identity in 7. Intuitively, 7 is the associative C-algebra with identity
generated by C' and C* subject to the relations (3) and (4). We observe that 7" is a homomorphic
image of 7.

In our description above, the algebra 7 is constructed from a given Bose Mesner algebra. How-
ever, in some sense we only needed the algebras C' and C*. These algebras are examples of character
algebras; see section 2 for a precise definition. In our main results we define 7 using character al-
gebras; we do not assume an underlying Bose Mesner algebra.

We now describe our main results. We show that xg,...,z4 remain linearly independent in 7,
and hence form a basis for a subalgebra of 7 which is isomorphic to C'. Similarly, we show zg, ..., 2}
form a basis for a subalgebra of 7 which is isomorphic to C*. For any 7-module V, we show the
following are equivalent: (i) V' is irreducible and egV # 0, (ii) V is irreducible and ejV # 0, (iii)
dime;V =1 for 0 < ¢ < d, and (iv) dimefV =1 for 0 < i < d. We show that there exists a
7-module which satisfies (i)—(iv) and that this module is unique up to isomorphism; we refer to
this module as the primary module. Let V denote the primary module. We show that for every
nonzero u € egV, the vectors egu,...,eju form a basis for V. Similarly, we show that for every
nonzero v € ejV, the vectors egv, ..., eqv form a basis for V. We compute the action of the elements
x;,x;,e;, and e on these bases. We consider certain two sided ideals 79 and 77 of 7. We show
that 7 is the direct sum of 7y and 77 and that 7y is isomorphic to Mgy1(C). We show that the
irreducible 7-module associated with 7 is isomorphic to the primary module. We compute the
central primitive idempotent of 7" associated with 7j in terms of the elements e; and e;.

We conclude this section by setting some notation. We write C to denote the field of complex
numbers and R to denote the field of real numbers. For all o € C, we write @ to denote the complex
conjugate of a. From now on when we consider a matrix it will be convenient to index the rows
and columns starting with zero. So for the rest of this paper we will regard matrices in My, 1(C) as
having rows and columns indexed by 0,...,d. For 0 <14, j < d we write e;; to denote the matrix in
My11(C) with a 1 in the ijth entry and zeros in all other entries. Suppose A is a set and f: A — A
is a map. We say f is an involution whenever f? is the identity map on A. In particular, the identity
map on A is an involution.



2 Character Algebras

In this section we recall the notion of a character algebra (or C-algebra, for short) and state some
basic results. For more information on character algebras, see [5, 9, 13, 30, 33, 35, 36]. We remark
that in [35, 36] a character algebra is the same object as the double algebra of a finite abelian
classlike hypergroup.

Definition 2.1 A character algebra C = < Xy,...,Xq > is a finite dimensional associative
C-algebra together with a basis Xy, ..., Xq having the following properties.

1. C is commutative.

2. Xo is the multiplicative identity element of C.

3. Let chj (0 < h,i,7 < d) denote complex numbers such that

d
XiX; =Y pliXn. (0<i,j <d) (5)
h=0
Thenp?j €R for0< h,i,5 <d.
4. There exist a permutation i — i of 0,...,d and positive real numbers k; (0 <i < d) such
that
piy = djirks. (0<i,j<d) (6)
5. The linear map 7 : C — C which satisfies 7(X;) = Xy for 0 < i < d is a C-algebra
isomorphism.
6. The linear map mg : C — C which satisfies mo(X;) = k; for 0 < i < d is a C-algebra
homomorphism.

We refer to the scalars k; as the valencies of C. We refer to the scalars plhj as the structure
constants of C'.

We observe that by (6) and commutativity, the permutation ’ is unique and is an involution.

Remark A character algebra whose structure constants are all nonnegative is essentially the same
object as a table algebra. For more information on table algebras, see [1, 2, 3, 4, 6, 7, 11, 12, 14,
15, 16, 45, 46).

We present four examples of character algebras.

Example 2.2 [9, Sections I1.2, 11.3] Suppose M is a Bose Mesner algebra and Ay, ..., Aq are as
in the introduction. Then M = < Agy,...,Aq > is a character algebra. In this example, T is the
transpose map and my is the character of M associated with Ej.

Example 2.3 [9, Sections I1.2, I1.3] Let the Bose Mesner algebra M be as in the previous example,
let M* denote the dual Bose Mesner algebra associated with M, and define Ag, ..., A} as in the
introduction. Then M* = < Af, ..., A} > is a character algebra. In this example, T is the complex
conjugation map and my is the character of M™ associated with E.

Example 2.4 [13, p. 26-28] Suppose G is a finite group and let CG denote the group algebra of G
over C. Let Cy = {1g},C1,...,Cy4 denote the conjugacy classes of G and write

Xi=>» (0<i<d)
zeC

Then C = < Xq,..., X4 > is a character algebra, with Cy = {x~' | z € C;} and k; = |Cy| for
0 <i<d. We observe that C is the center of CG.



Example 2.5 [13, p. 26-28] Suppose G is a finite group. Let xo denote the trivial complex char-
acter of G, and let x1,...,xq denote the remaining irreducible complex characters of G. Write

Xi = dixi, (0<i<d)

where d; = degx; for 0 < i < d. Then C = < Xy,...,Xq > is a character algebra, with x;y = X;
andki:d? for0<i<d.

The structure constants and valencies of a character algebra satisfy certain relations; we recall
those which will be useful later on.

Proposition 2.6 (/9, p.88,89]) Suppose C = < Xy,...,Xq > is a character algebra. Then

(i) ply =pl, (0 < hyi,j < d)
(ii) pgj = p?o = Op;, (0< h,j <d)
(iii) knply = kjpl,, (0 < hyi,j <d)
(iv) pl = plk, (0 < hyi,j <d)
(v) 0'=0

For the rest of this section, let C' = < X, ..., Xg > denote a character algebra. We now describe
the algebraic structure of C. The scalar

N=>k (7)

will play a role in our description; we observe by Definition 2.1(4) that N € R>?. We refer to N as
the size of C. By [9, Proposition 5.4, p. 92| there exists a basis Ey,..., Fq of C such that

E,E; = 6;;F;, (0<i,j <d) (8)

d
Xo=)Y_E; (9)
=0

and
d
Ey=N">"X, (10)
i=0
The basis FEjy,...,FEy is unique up to a permutation of Fi,...,FE;. We refer to the elements
Ey, ..., E4 as the primitive idempotents of C.

Since Xy,..., Xy and Ey, ..., E4 are bases of C, there exist complex scalars p;(7) (0 <i,j < d)
such that

d
Xi =Y pili)E; (0<i<d) (11)

=0
and complex scalars ¢;(j) (0 < i,j < d) such that



Combining (11) and (8), we see that

In view of (13), we refer to p;(j) as the ijth eigenvalue of C' (with respect to the given ordering
Ey,...,E;). We refer to ¢;(j) as the ijth dual eigenvalue of C' (with respect to the given ordering
Ey,..., Ey).

Next we recall several identities involving the eigenvalues and dual eigenvalues of C. Combining
(11) and (12) we find that

d
> pili)a;(h) = 6N (0< h,i <d) (14)
=0

and ;

ZQi(j)pj(h) = o N. (0 < h,i <d) (15)
=0

Setting ¢ = 0 in (11) and comparing the result with (9) we see that

po(i) = 1. (0<i<d) (16)
Similarly, using (12) and (10) we find

qo(1) = 1. (0<i<d) (17)

Applying 7 to (10) and using (7) we find that 7o(Ep) = 1. Now setting j = 0 in (13) and applying
o to the result gives

pi(0) = k;. (0<i<d) (18)
Motivated by (18), we write

By [9, Theorem 5.5, p. 94] we have

pi(j)m; = q;(0)k; (0<i,j<d) (20)

and
m; € R7Y. (0<i<d) (21)

We now recall several identities involving the complex conjugates of the eigenvalues and dual
eigenvalues of C. By [9, p. 90] we have

pir(5) = pi(4); (0<i,j<d) (22)

combining this with (14) gives

4i(j") = ¢:(j)- (0<i,j <d) (23)

There exists a permutation i +— i of 0,...,d such that 7(F;) = E; for 0 < ¢ < d; it is routine to
verify that this permutation is an involution and satisfies 0 = 0. Using (11), (12), (22), and (23),
one can also show that

pi(7) = pi(J) (0<i,j<d (24)



and

4 (7) = @i (5)- (0<4,j<d) (25)

We conclude our discussion of C' by recalling how the structure constants of C' are determined
by the eigenvalues and dual eigenvalues of C'. Namely, by [9, p. 96] we have

d
ply =N pi(r)p; () (h). (0 < hyi,j < d) (26)
r=0

Using (26) in combination with (15), one can also show that
d
pi(r)p;(r) = plipn(r). (0<i,5,r <d) (27)
h=0

3 Dual Character Algebras

In this section we describe the notion of duality for character algebras. The interested reader will
find another account of these ideas in [9]. We begin by recalling the matrix of eigenvalues of a
character algebra.

Definition 3.1 Suppose C = < Xy,...,Xq > is a character algebra and fiz an ordering Ey, ..., Ey
of the primitive idempotents of C. Let P denote the matriz in Mgy1(C) which satisfies

Bij = p;(i). (0<i,j <d) (28)
We refer to P as the matrixz of eigenvalues of C' associated with the ordering Fy, ..., Eq.
We are now ready to define duality.

Definition 3.2 Suppose C = < X,...,Xq > and C* = < Xg,...,X] > are character algebras.
Fiz an ordering Ey, ..., Eq of the primitive idempotents of C' and let P denote the associated matriz
of eigenvalues. Fiz an ordering Eg, ..., E} of the primitive idempotents of C* and let P* denote the
associated matriz of eigenvalues. We say C' and C* are dual (with respect to the given orderings of
their primitive idempotents) whenever

PP* € Span{Il}. (29)
In this case the size N of C and the size N* of C* coincide and PP* = N1.
We present two examples of duality.

Example 3.3 Let M denote a Bose Mesner algebra and define Ag,...,Aq and Eqy,...,Ey as in
the introduction. Let M* denote the associated dual Bose Mesner algebra and define Af, ..., A}
and Eg,...,E} as in the introduction. By Ezamples 2.2 and 2.3, M = < Ay,...,Aq > and
M* = < Aj,..., A} > are character algebras. Moreover, Ey,...,E; is an ordering of the prim-
itive idempotents of M and Eg, ..., E} is an ordering of the primitive idempotents of M™. Recall
from the introduction that there exists an isomorphism p : M — M™* of vector spaces such that
Er = p(A;) and Af = n~1p(E;) for 0 <i < d, where n is the order of M. It follows that the tran-
sition matrix from Ag,..., A} to B, ..., E} is n~! times the transition matriz from Ey,...,Ey to
Ag, ..., Aq. Therefore, M and M* are dual with respect to the orderings Ey, ..., Eq and Eg, ..., E}.



Example 3.4 [13, p. 26-28] Suppose G is a finite group, let C' denote the corresponding character
algebra of Example 2.4, and let C* denote the corresponding character algebra of Example 2.5. There
s a natural one to one correspondence between the irreducible characters of G and the primitive
idempotents of C'; this correspondence induces an ordering of the primitive idempotents of C' with
respect to which C and C* are dual in the sense of Definition 3.2. For this ordering, P is essentially
the character table of G. More specifically, let Cy,C1,...,Cyq denote the conjugacy classes of G as
i Example 2.4 and let xo, X1, - .., Xd denote the irreducible complex characters of G as in Exzample
2.5. Then for 0 < i,j < d we have Py = |C;|d; 'xi(g;), where d; = degx; and g; € C}.

The following notational convention will be useful when we deal with dual character algebras.

Note 3.5 Suppose C = < Xo,...,Xq > and C* = < X{,..., X > are character algebras which

are dual with respect to the orderings Ey,...,E; and Eg, ..., E} of their primitive idempotents. If
we write f to denote a particular object associated with C' and Ey, ..., Eg then we write f* to denote
the corresponding object associated with C* and L, ..., E}.

The next two propositions describe certain relationships between two character algebras which
are dual. We omit their proofs, which are routine.

Proposition 3.6 Suppose C = < Xy,...,Xq > and C* = < X{J,..., X > are character algebras
which are dual with respect to the orderings Ey, ..., Eq and Ej, . .., EY of their primitive idempotents.
With reference to Note 3.5,

(1) pi(d) = a; (), (0<i,j<d)
(i) @:(j) = p; (), (0<4i,j<d)
(iii) k; =m], (0<i<d)
(iv) mi = k;. (0<i<d)

Proposition 3.7 Suppose C = < Xy,...,Xg > and C* = < X{,..., X > are character algebras
which are dual with respect to the orderings Ey, ..., Eq and Ej, ..., EY of their primitive idempotents.
Then
(i) the map i — i associated with C' is the same as the map i — i associated with C* and
E, ..., B}, A
(ii) the map i — 1 associated with C' and Ey, ..., Eq is the same as the map i — i’ associated
with C*.

The following convention describes the notation we will use for the maps given in Proposition
3.7.

Note 3.8 Suppose C' = < Xp,...,Xq > and C* = < X{,...,X] > are character algebras which
are dual with respect to the orderings Ey, ..., Eq and Ly, ..., E} of their primitive idempotents. For
0 <i <d, we write i’ (resp. i) to denote the image of i under the map discussed in Proposition

3.7(i) (resp. 3.7(ii)).

4 The Algebra 7

In this section we introduce the Terwilliger algebra 7 associated with a pair of dual character
algebras.



Definition 4.1 Suppose C = < Xy,...,Xq > and C* = < X{,..., X > are character algebras

which are dual with respect to the orderings Ey, ..., Eq and Ef, ..., K of their primitive idempotents.
With reference to Note 3.5, let T denote the associative C-algebra with 1 which is generated by the
symbols xg, ..., xq,xq,...,T); subject to the relations
(T1) xo =,
d
(T2) ziz; = Y plian, (0<i,5<d)
h=0
(T2%) =z} ;k = g_:opij*:l?}i, (0<4,5<d)
(T3) ejaies =0 if pjy =0, (0< h,i,j <d)
(T3*) epzie; =0 if ply=0. (0 < hyi,j <d)

The p?j are the structure constants of C, as in Definition 2.1, and the pl*

i are the structure constants
of C*. The e; and e are defined by

d
ei=N""> " qi(i)x; (0<i<d) (30)
§=0
and
d
er =N g (j)as (0<i<d) (31)
§=0

Here N is as in (7), the q;(j) are the dual eigenvalues of C' as in (12), and the g} (j) are the dual
etgenvalues of C*.

We remark that 7 is invariant under a reversal of the roles of C' and C*; we will often take
advantage of this fact in what follows.

5 Two Subalgebras of 7

In this section we consider the subspaces Span{xo,...,zq} and Span{z{, ... ,z}} of T; these turn
out to be subalgebras of 7 which are isomorphic to C' and C* respectively. We begin with an
observation regarding x¢ and x).

Proposition 5.1 With reference to Definition 4.1, we have x¢ = z§ = 1.

Proof. By (T1) we have x¢ = x{j; write e to denote this element of 7. To show that e = 1, observe
by (T2) and Proposition 2.6(ii) that ex; = z;e = z; for 0 < i < d. Similarly, ez} = zfe = x} for
0 < i < d. Therefore e = 1, since o, ..., 2q,2{, ..., Tq generate 7. O

We now turn our attention to a certain map from C to 7.

Proposition 5.2 With reference to Definition 4.1, let ¢ : C — T denote the linear map which
satisfies ¢(X;) = x; for 0 <i <d. Then

(i) ¢ is a C-algebra homomorphism,
We write C to denote the image of ¢.



Proof. (i) By Proposition 5.1 we have ¢(X() = 1. To see that ¢(XY) = ¢(X)p(Y) for all X, Y € C,
compare (5) and (T2) and recall that X, ..., Xy is a basis for C.
(ii) Apply ¢ to (12) and compare the result with (30). O

After developing some theory concerning 7', we will show that ¢ is injective. For now, however,
we content ourselves with using ¢ to obtain certain relations in 7.

Proposition 5.3 With reference to Definition 4.1,

d
i) 1= e
1=0

(ii) ese; = dijeq, (0<i,j <d)
d
(iif) 2 =Y pi(i)e;- (0<i<ad)
§=0

Proof. (i) Apply ¢ to (9) and use Propositions 5.1 and 5.2(ii) .
(ii) Apply ¢ to (8) and use Proposition 5.2.
(iii) Apply ¢ to (11) and use Proposition 5.2(ii). O

Next we focus our attention on C.

Proposition 5.4 With reference to Definition 4.1,
(i) C = Span{zo,...,xq},
(ii) C = Span{ey,...,eq},
(iii) C is a commutative subalgebra of T .

Proof. (i) This is immediate from the definition of ¢.
(ii) This is immediate from Proposition 5.2(ii), since Ey,..., F4 span C.
(iii) This is immediate from Proposition 5.2(i) and the fact that C is commutative. O

Reversing the roles of C' and C* in the last three propositions, we obtain the following three
propositions.

Proposition 5.5 With reference to Definition 4.1, let ¢* : C* — T denote the linear map which
satisfies ¢* (X)) = xf for 0 <i < d. Then

(i) ¢* is a C-algebra homomorphism,

(i) ¢(E7) = . (0<i<d
We write C* to denote the image of ¢*.

Proposition 5.6 With reference to Definition 4.1,
d

(1) 1= 6:7
i=0
(i) efe; = dize;, (0<i,j<d)
d
(ii) =7 = Zp;k(j)ej (0<i<d)
j=0

Proposition 5.7 With reference to Definition 4.1,
(i) C* = Span{zj,... x5},
(ii) C* = Span{eg, ... e},

10



(iii) C* is a commutative subalgebra of T.
Proposition 5.8 With reference to Definition 4.1, the algebra T is generated by C U C*.

Proof. The elements xo, ..., 4,25, ..., 2, are contained in C UC* and generate 7. O

6 An Involution of 7

In this section we describe an involution of 7 which will be useful in some of our later calculations.

Proposition 6.1 With reference to Definition 4.1 and Note 3.8, there exists a unique map t:7 —
T such that

(i) (= +y) =1(z)+ 1), (z,y€T)

(i) T(ax) =af(x), (xeT, aeC)
(ili) T(zy) = 1)), (z,y€T)

(iv) t(@:) = 2, (0<i<d)

(v) H(z7) = 2. (0<i<d)

Moreover,

(1) Her) = e, 0<i<d)

(vii) f(ef) =ej, (0<i<d)

(viii) 1 is an involution.

Proof. By definition 7 is the quotient T'/.J, where T is the free associative C-algebra with 1 generated
by xo,...,xq,2(,...,x; and J is the two sided ideal in T" generated by the union of the sets

Ty = {xo — 75},

d
Ty = {miz; — > _plyan | 0<id,j <d},
h=0

d
T5 = {aja; = Y pifw; | 0<i,j <d},
h=0

Ty = {ejmie; | 0 < h,i,j <d, plj; =0},
and
T5 = {epzie; | 0 < hyi,j < d, plf =0}

Let §: T — T denote the map which satisfies (i)—(v). To show that I induces a map :7 — 7, we
show that J is invariant under . To do this, we show that { permutes the elements of each of the
sets T1-1T73.

To show that

i(wo — 2p) = wo — 20, (32)

observe that (zg) = ¢ = x¢ in view of Proposition 2.6(v). Similarly we obtain {(z{) = z§; now
(32) follows in view of (i) and (ii).

To show that { permutes the elements of 15, we show that

d d
i <517i517j - Zp?j:vh) = zjiwi — Y Pl (0<i,j<d) (33)
h=0 h=0

11



To do this, let ,j be given and observe by (i) and (ii) that

d d
I <:Ei$j - Zp?jznh) =TI (zizj) — 1 <Zp?jxh) . (34)

h=0 h=0

By (iii) and (iv) we have
(zixy) = zjray. (35)

On the other hand, by (i), (ii), (iv), and Definition 2.1(3) we have

d d
i (Zp?jxh> => plan. (36)
h=0 h=0

Using Proposition 2.6(i),(iv) and the fact that ' is an involution we obtain

d d
> vlaw = . (37)
h=0 h=0

Now (33) follows by combining (34), (35), (36), and (37).

We have now shown that { permutes the elements of T5. Reversing the roles of C' and C* in the
above argument, we see that | also permutes the elements of 7.

To show that { permutes the elements of T3, we show that for 0 < h,4,j < d we have

I(epmie]) = ejwyey, (38)
and '
p?j =0 if and only if p}, =0. (39)
To show (38), we first show that
I(ei) = e;. (0<i<d) (40)

To do this, apply I to (30) and use (i), (ii), and (iv) to obtain

fe) = N7 qi(j)ay. (0<i<d) (41)

He) = N7~ ailh)w;. (0<i<d (42)

Compare (42) and (30) to obtain (40). To show (38), combine (40) with (iii) and (iv).

To show (39), use Proposition 2.6(iii) and the fact that k; # 0 for 0 <14 < d.

We have now shown (38) and (39), and it follows that I permutes the elements of T5. Reversing
the roles of C' and C* in the above argument, we see that | also permutes the elements of 7.

We have now shown that { permutes the elements of the sets T7-T3, and it follows that J is
invariant under . Therefore, { induces a map t : 7 — 7 which satisfies (i)—(v). We saw in the
above argument that I satisfies (vi); it follows that the induced map t also satisfies (vi). Reversing

12



the roles of C' and C* in (vi), we see that T satisfies (vii) as well. The fact that 1 is unique follows
from (i)—(v) and the fact that xo,...,zq, 2y, ..., 2} generate 7.

To see that T is an involution, observe by (i)-(iii) that the map 12 is a C-algebra homomorphism.
Now use (iv) and the fact that ’ is an involution to find that 2(x;) = 2; for 0 <4 < d. Similarly, we
have T2(x;") =z for 0 <1i < d. We conclude that 12 is the identity map, since zo, ..., Z4, TGy ey T
generate 7. O

7 Some Reduction Rules

In this section we find several equations which allow one to write long products involving ey or e
as linear combinations of shorter products; we call these equations reduction rules. We begin with
four such rules.

Proposition 7.1 With reference to Definition 4.1, for 0 <1i,j < d we have
(i) ejrien = dijxie],
ii) € jeieg =N~ Lai(5)z e,
) ajricy = 0 @hch
)

(iv) zjeieq = Z p” eney-

Proof. Let 1, j be given.
(i) If ¢ # 4, then p), = 0 by Proposition 2.6(ii) so ejzieq = 0 by (T3), as desired.
If i = j, then use Proposition 5.6(i) and the result in the previous case to obtain

d
Tiey = E erTie
r=0

* *
- ei xieo,

as desired.
(ii) By (30),

d
-1
e;-eiea = e;'f (N E qi(r):nr> ey-
r=0

Apply (i) to each term of the sum to obtain the desired result.
(iii) By Proposition 5.6(iii),

d
* * E * *
TiTie) = < E pj(r)er) xiep.
r=0

Now apply (i) to each term of the sum and use Proposition 3.6(ii) to obtain the desired result.

(iv) By (30),
:Eeleo—x ( 1qu r)

Apply (iii) to each term of the sum and use Proposmon 5.3(iii) to obtain

d

d
rieiey Z ( 1Zqz'(7“)qj(7")pr(h)) €ney-
r=0

13



Now use Proposition 3.6(i),(ii), the fact that N = N*, and (26) to find that the quantity in paren-
theses is plhj*, as desired. O

We now take advantage of the antiautomorphism t of Proposition 6.1 and our ability to reverse

the roles of C' and C* to find more reduction rules in 7.

Proposition 7.2 With reference to Definition 4.1 and Note 3.8, for 0 < 1i,j < d we have
(i) ega:,-e*» = 0y j€4;,

eoele =N~ ql(j)eS:Ej/,

ii)
(iif) ez} = = q;(i)esai,
)

(iv) egeir; = th*e*eh
h=

Proof. (i) Apply t to Proposition 7.1(i) and replace ¢ with .
(ii) Apply t to Proposition 7.1(ii).
(iii) Apply t to Proposition 7.1(iii), replace ¢ with z' , replace j with j, and use (23) and (25).
(iv) Apply 1 to Proposition 7.1(iv), replace j with 7, and use the fact that ph* e R. O

Proposition 7.3 With reference to Definition 4.1, for 0 <1i,j < d we have
(i) ejxleg = b5z eq,
(i) ejefeo = N~ 'pi(j)ateo,
(ili) zjzfeq —p]( i)xfeo,
)

(iv) zjefeq = E p?je;';eo.
h=0
Proof. Reverse the roles of C' and C* in Proposition 7.1 and use Proposition 3.6(i). o

Proposition 7.4 With reference to Definition 4.1 and Note 3.8, for 0 < i,j < d we have
(i) eoxjej = 6;e0],
(ii

) eoefej = N 'pi(7)eo?,
(ili) epzfa; = p]( i)eox],
)

(iv) epefz; = E plj,eoeh

Proof. Reverse the roles of C' and C* in Proposition 7.2 and use Propositions 3.6(i) and 3.7. o

The next three propositions are useful special cases of the last four propositions.

Proposition 7.5 With reference to Definition 4.1 and Note 3.8, for 0 < j < d we have
(i) ejeoes = N~1lz;ep,
) €epeoe; = N~tepx,
(ili) ejeleo = N‘lx;eo,
(iv) eoefe; = N_leox;f.
Proof. (i) Set ¢ = 0 in Proposition 7.1(ii) and use (17).
(ii)—(iv) These are similar to the proof of (i). O
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Proposition 7.6 With reference to Definition 4.1 and Note 3.8, for 0 < j < d we have
(i) zjeoes = ejeq,
(ii

(iii

* * *
eoeoxj — 60637
* %
Tj€n€o = 6]-60,

(iv) epejz; = eoe;,.

)
)
)
Proof. (i) Set ¢ = 0 in Proposition 7.1(iv) and use Proposition 2.6(ii).

(ii)—(iv) These are similar to the proof of (i). O

Proposition 7.7 With reference to Definition 4.1,
(i) epeiey = N~tmye, (0<i<d)
(ii) 606:60 = N‘lk‘ieo, (0 <1< d)
(iil) efeoes = N~tep,
(iv) epeeo = N~ teg.
Proof. (i) Set j = 0 in Proposition 7.1(ii), recall that xg = 1, and use (19).
(ii) Set j = 0 in Proposition 7.3(ii), recall that z§ = 1, and use (18).
(iii) Set ¢ = 0 in (i) and use (17) and (19).
(iv) Set ¢ =0 in (ii) and use (16) and (18). O

So far in this section we have found reduction rules for all products of three symbols beginning
or ending with either ey or ej. We conclude this section by finding rules which relate three symbol
products with eg in the center to three symbol products with ej in the center.

Proposition 7.8 With reference to Definition 4.1 and Note 3.8, for 0 < i,j < d we have

(i) zjepry = Nejeoe;,

(ii) zjege; = €jeox?,

(iii) ejeqzy = xjeoe;],
)

ok, —1,.% *
(iv) ejefe; = N zieow; .

Proof. (i) Let i, j be given. By Proposition 7.7(iii) and the fact that e3 = g, we have
xjeqry = NxjegepepesTi. (43)

Now use Proposition 7.6(iii) to eliminate x;efeq and Proposition 7.6(iv) to eliminate egefx; on the
right side of (43), obtaining

zjeqry = Nejepe;,
as desired.

(ii) Let 4, be given. By Proposition 7.6(ii) and the fact that " is an involution, we have

Tjepe; = Tj€He0; -

Now apply Proposition 7.6(iii) to z;ejeo to obtain
Tjepe; = €jeoTs,

as desired.
(iii) Reverse the roles of C' and C* in (ii) and use Proposition 3.7(i).

(iv) Reverse the roles of C and C* in (i); now use Proposition 3.7(ii) and the fact that N = N*.
O
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8 The Primary Module

With reference to Definition 4.1, let V' denote a 7-module. By Proposition 5.3(i),(ii),

V= Z eV, (direct sum) (44)

where the sum is over all i for which e;V' # 0. Similarly, by Proposition 5.6(i),(ii),

V= Z e;V, (direct sum) (45)

where the sum is over all ¢ for which eV # 0. In this section we describe a 7-module for which the
decompositions given in (44) and (45) are especially nice; we call this module the primary module.

Lemma 8.1 With reference to Definition 4.1, suppose V is a T -module.
(i) For all nonzero v € egV we have

eoeiv = N~ k. (0<i<d) (46)
(ii) For all nonzero v € efV we have
epeiv = N~ 'myv. (0<i<d) (47)
Proof. (i) Apply Proposition 7.7(ii) to v and observe that v = egv.

(ii) Reverse the roles of C' and C* in (i) and use Proposition 3.6(iv). O

Lemma 8.2 With reference to Definition 4.1, suppose V is a T -module.
(i) For all nonzero v € eV the vectors ejv, ..., e5v are linearly independent.
(ii) For all nonzero v € efV the vectors egv, ..., equ are linearly independent.

Proof. (i) Use Lemma 8.1(i) and the fact that N~1k; # 0 to conclude that efv # 0 for 0 < i < d.
Now (i) follows routinely from Proposition 5.6(ii).
(ii) Reverse the roles of C' and C* in (i). O

Recall that a 7-module V is said to be irreducible if it is nonzero and its only 7-submodules
are 0 and V.

Proposition 8.3 With reference to Definition 4.1, suppose V is a T -module; then the following
are equivalent.

(i) dimeV =1, (0<i<d)
(ii)) egV # 0 and V is irreducible,
(i) dim eV = 1, 0<i<d)
(iv) egV # 0 and V is irreducible.

Proof. (i) = (ii) Clearly eyV # 0. To show that V is irreducible, suppose W is a nonzero 7 -
submodule of V; we show that W = V.

By (i) and (44), we see that dim V' = d+ 1. Fix a nonzero v € gV and observe by Lemma 8.2(i)
that the d + 1 vectors efjv, ..., ejv form a basis for V. Now fix a nonzero w € W and let ay, ..., aq
denote complex numbers such that

d
w = Z a;e;v. (48)
i=0
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Since w # 0, there exists j such that a; # 0. Apply €] to both sides of (48) and use Proposition

5.6(ii) to obtain ozj_le;w = ejv; it follows that ejv € W. Now use Lemma 8.1(i) and the fact that
N~1k; # 0 to conclude that v € W. It follows that {ejv | 0 < i < d} C W, and since ejv, ..., e
form a basis for V', we have W =V as desired.

(ii) = (iii) Fix a nonzero v € eyV; we show that ejv,...,ejv form a basis for V. By Lemma
8.2(i), the vectors ejv,...,ejv are linearly independent. To show that it spans V, we show that
W = Span{efv | 0 <i < d} is a T-submodule of V.

By Proposition 7.3(iv) and the fact that v = egv, we have

d
Tiejv = Zp?je}';fu. (0<i,5 <d)
h=0
It follows that W is closed under xo,...,z4. Since W is clearly closed under zf,...,z} and since
the elements xo,...,zq,2(, ..., generate 7, we see that W is a 7-submodule of V', as desired.

Since V' is irreducible and W # 0, it follows that V' = W. Therefore, ejv,...,ejv form a basis
for V and (iii) is apparent.

(iii) = (iv) Reverse the roles of C' and C* in the proof of (i) = (ii).

(iv) = (i) Reverse the roles of C' and C* in the proof of (ii) = (iii). O

Proposition 8.4 With reference to Definition 4.1, there exists a T -module V' which satisfies Propo-
sition 8.3(1)—(iv). Moreover, V is unique up to isomorphism of T-modules. We refer to V as the
primary module of T.

Proof. To show existence, we construct a 7-module which satisfies Proposition 8.3(i)—(iv). Towards
this end, let V denote a d + 1 dimensional vector space over C and let vy, ...,v; denote any basis
of V. Let T denote the free associative C-algebra with 1 generated by xo,...,zq,25,...,z). Give
V' the structure of a T-module such that

ziv; = pi(j)vj (0<4,7<d) (49)
and
d
viv; =Y plop. (0<i,j <d) (50)
h=0

To show that V' is a 7-module, we show that each of the relations of Definition 4.1(T1)—(T3*) hold
on V. To do this, it is helpful to consider a second basis of V. Set

vi = pili)v (0<i<d) (51)
j=0
and observe by (15) that
d
vi=N"Y"qi(i)v;. (0<i<d) (52)
§=0

By (52), the vectors v, ..., v form a basis for V. We claim that

zivj = ¢i(j)vj 0<i,j<d (53)
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and .
Tv; = Zpiljv}; (0<i,j<d) (54)
h=0

To obtain (53), evaluate the left side using (51), (50), (52), Proposition 3.6(ii), (27), and (14) in
that order. To obtain (54), use (51), (49), (52) and (26).
Combining (30), (49), and (15) we find

€iv; = (5¢j?]j. (O < i,j < d) (55)

Reversing the roles of C' and C* in (55), we obtain

We now consider (T1)—(T3*).
(T1) We show that
(xo —z5)v =0. (veV) (57)

Towards this end, set ¢ = 0 in (49) and use (16) to see that xo acts as the identity on V. Reversing
the roles of C' and C*, we find that x{ also acts as the identity on V, and (57) follows.
(T2) Let 4,5 be given with 0 < 4,5 < d; we show that

d
(:Eil‘j - szhjxh> v=0. (veV) (58)
h=0
To do this, observe that for 0 < r < d we have
zizjor = pi(r)pi(r)vr (by (49))
d h
= hzopijph(T)’Ur (by (27))
d
= hE Plshvr. (by (49))
=0

Now (58) follows.
(T2*) Let i, 7 be given with 0 <4, j < d; we show that

d
(azf T Zp%*xﬁ) v =0. (veV) (59)
h=0

To do this, reverse the roles of C' and C* in the proof of (T2) and use Proposition 3.6(ii).
(T3) Given h,i,j such that pé‘j = 0, we show that

epzie;v = 0. (veV) (60)
To do this, observe that for 0 < r < d we have
enTiejvy = djrepwivy (by (56))
d
= 0], 3 P (by (54))
= 5jrpzhr?1}; (by (56))
= 0.
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Now (60) follows.
(T3*) Given h,i,j such that plhj* = 0, we show that

epxiejv = 0. (veV) (61)

To do this, reverse the roles of C' and C* in the proof of (T3).

We have now shown that (T1)—(T3*) hold on V, so V is 7-module. Next we show that V
satisfies Proposition 8.3(i)-(iv). By (56) we see that for 0 < i < d, the vector v} is a basis for eV,
so dime!V = 1. In particular, V satisfies Proposition 8.3(iii), so V satisfies Proposition 8.3(i)—(iv),
as desired.

Concerning the uniqueness of V', suppose W is a 7-module which satisfies Proposition 8.3(i)—
(iv). We show that V and W are 7-module isomorphic. Towards this end, fix a nonzero w € efW
and observe by Lemma 8.2(ii), (44), and Proposition 8.3(i) that egw, ..., eqw form a basis for W.
Using Proposition 5.3(ii),(iii) we obtain

ziejw = pi(j)ejw. (0<i,j <d) (62)

Using Proposition 7.1(iv) and the fact that w = efw, we obtain
d
riejw = Zplhj*ehw. (0<i,5<d) (63)
h=0

Comparing (62) with (49) and (63) with (50) we see that the linear map ¢ : W — V which has
p(e;w) = v; for 0 < i < d is a T-module isomorphism, as desired. O

9 Two Bases for the Primary Module

In this section we describe two bases for the primary module with respect to which the action of
the generators x; and x; of 7 is especially nice.

Proposition 9.1 With reference to Definition 4.1, let V denote the primary module for T. Then
for vg,...,vq in'V, the following are equivalent.
(i) There exists a nonzero v € eV such that

Vi = €;U. (0<i<d) (64)
d
(ii) At least one of v, ...,vq is nonzero, v; € ;V for 0 <i <d, and ) v; € efV.
i=0
Moreover, suppose (i) and (ii) hold. Then vy, ...,vq is a basis for V and
d
v = Z (I (65)
i=0
Proof. (i) = (ii) The vectors vy, ...,vq are linearly independent by Lemma 8.2(ii) so they are

nonzero. Observe that v; = e;v € ¢;V for 0 < ¢ < d. To obtain the last assertion, it suffices to prove
(65). To obtain (65), sum (64) over ¢ and use Proposition 5.3(i).

(ii) = (i) Let v be as in (65) and observe that v € eV by hypothesis. To see that (64) holds,
apply e; to (65) and use Proposition 5.3(ii) and the fact that v; € ¢;V for 0 < i < d. Finally, observe
that v # 0; otherwise vy, ...,vq are all zero by (64), which contradicts our hypothesis.
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Now suppose (i) and (ii) hold. We have observed that vy, ...,vs are linearly independent, and
they span V since dimV = d + 1. Therefore vy, ...,vq forms a basis for V', as desired. We saw in
the proof of (i) = (ii) that (65) holds. O

Motivated by Proposition 9.1, we make the following definition.

Definition 9.2 With reference to Definition 4.1, let V denote the primary module for T. By a
standard basis of V. we mean a sequence vy, ...,vq of vectors in V which satisfies Proposition

9.1(i), (ii).

Proposition 9.3 With reference to Definition 4.1, let V denote the primary module for T and sup-
POSE Vg, . . ., Vg 18 a standard basis of V.. Then for wy,...,wq in'V, the following are equivalent.

(i) There exists a nonzero o € C such that v; = cw; for 0 <i <d.

(ii) wo,...,wq is a standard basis of V.

Proof. (i) = (ii) This is clear from Proposition 9.1(ii).

(ii) = (i) By Proposition 9.1(i) there exists a nonzero v € eV such that v; = e;v for 0 < i < d.
Similarly, there exists a nonzero w € ejV such that w; = e;w for 0 <4 < d. Recall that dimegV =1
by Proposition 8.3(iii), so there exists a nonzero a € C such that v = aw. Combining the above
information, we find that v; = aw; for 0 < i < d, as desired. O

In view of Proposition 9.3, we sometimes abuse language by referring to “the” standard basis of
V.

We now describe how the elements z;, =}, e;, and €] of 7 act on the primary module with respect
to the standard basis.

Proposition 9.4 With reference to Definition 4.1, let V' denote the primary module for T and let
g, ..., Vg denote a standard basis of V.. Then for 0 < 1,7 < d we have

(i) eivj = dijvj,

(ii) ziv; = pi(4)vy,

d
(il) efv; = N71q;(i) 3 pi(r)vy,
r=0
d
(iv) ziv; = 2 pijor
r=0

Proof. (i) This is immediate from (64) and Proposition 5.3(ii).

(ii) Use Proposition 5.3(iii) to eliminate z; on the left and use (i) to evaluate the result.

(iii) By Proposition 9.1(i) there exists a nonzero v € e§V such that v; = e;v for 0 <1i < d. By
Proposition 5.6(ii) we have v = efv. Therefore,

ejv; = e;e;v
= ejejequ
= N7'gi(i)zw (by Proposition 7.1(ii))
= N7'g;(9) iopi(r)ew (by Proposition 5.3(iii))

= Nlg(4) é pi(r)o
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as desired.

(iv) By Proposition 9.1(i) there exists a nonzero v € ejV such that v; = e;v for 0 < ¢ < d. By
Proposition 5.6(ii) we have v = ejv. Now apply both sides of Proposition 7.1(iv) to v and use the
above information to evaluate the result. O

Reversing the roles of C' and C* in the above propositions, we obtain the following propositions.
Proposition 9.5 With reference to Definition 4.1, let V' denote the primary module for T. Then

forvg,...,v} in V, the following are equivalent.
(i) There exists a nonzero v € eV such that

vl =elv. (0<i<d) (66)
d
(ii) At least one of vg, ..., v} is nonzero, v; € e;V for 0 <i<d, and ) v} € eV.
i=0
Moreover, suppose (i) and (i) hold. Then v, ...,v} is a basis for V and
d
i=0
Definition 9.6 With reference to Definition 4.1, let V denote the primary module for T. By a
dual standard basis of V we mean a sequence vj, ..., v} of vectors in V' which satisfies Proposition

9.5(i), (ii).

Proposition 9.7 With reference to Definition 4.1, let V' denote the primary module for T and

suppose vg,...,vy 18 a dual standard basis of V. Then for wg,...,wy in V, the following are
equivalent.

(i) There exists a nonzero o € C such that v} = aw] for 0 <i <d.

(ii) wg,...,w) is a dual standard basis of V.

Proposition 9.8 With reference to Definition 4.1, let V denote the primary module for T and let
Vg, -+ -, vy denote a dual standard basis of V. Then for 0 <1i,j < d we have
(i) ejv; = dijv],

(i) zjvf =pi ()],
d
(iff) e;or = N~1qi(4) 2 pi(rjr,
r=
d
(iv) z0] = Zopgjv;k.
r—=

We conclude our discussion of the standard and dual standard bases by determining the transition
matrices between them.

Proposition 9.9 With reference to Definition 4.1, let V' denote the primary module for T and let

v, .. .,vq denote a standard basis of V.. Then there exists a dual standard basis vy, . ..,v; of V such
that
d
v =Y Py (0<i<d) (68)
§=0
and
d
vi=N"Y (i) (0<i<d) (69)
§=0
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Proof. Write v} = Nejuvg for 0 < i < d. Then Proposition 9.5(i) holds with v = Nwg so vg,...,v}
is a dual standard basis of V. To show (68), set j = 0 in Proposition 9.4(iii) and use (17). To show
(69), use (68) and (15). O

10 Two Subalgebras of 7, Revisited

In this section we return our attention to the subalgebras C and C* of 7 which are discussed in
section 5.

Lemma 10.1 With reference to Definition 4.1, the elements xg, ..., xq,27,...,x) of T are linearly
independent. (Recall from Definition 4.1(T1) that xo = x{.)

Proof. Suppose complex numbers ay, ..., a4, a7, ..., o} are given such that
d d
apzo + Z oz + Z ajz; =0. (70)
i=1 i=1
We show that ag,...,aq4,a7,...,a] are all zero. Towards this end, we first show that a;, = 0 for

1 <r <d. Let r be given and multiply each side of (70) on the left by e and on the right by ef.
Use Propositions 5.6(ii), 5.7(iii), and 7.1(i) to simplify the result, obtaining

ayzrep = 0. (71)

We claim that z,ej # 0. To see this, let V' denote the primary module for 7 and let vj,..., v}
denote a dual standard basis for V. Set j = 0 in Proposition 9.8(iv) and use Proposition 2.6(ii) to
evaluate the result, obtaining z,v; = v}. By Proposition 9.8(i) we have ejv} = v, and it follows
that z,ejug = vy, Since v} # 0, we must have z,ef # 0, as claimed. Combining this with (71), we
find that o, = 0.

Reversing the roles of C' and C* in the above argument, we find that af, ..., ) are zero; now
(70) reduces to agxg = 0. Setting i = j = 0 in Proposition 9.8(iv) and using Proposition 2.6(ii) to
simplify the result, we find that xzovj = v;. Therefore z¢ # 0 and it follows that o = 0, as desired.
Od

Proposition 10.2 With reference to Definition 4.1,
(i) the map ¢ of Proposition 5.2 is injective,

(i) dimC =d+1,
(iil) xo,...,2q is a basis of C,
(iv) eg,...,eq is a basis of C.

Proof. (i) This is immediate from Lemma 10.1.
(ii) This is immediate from (i) and the fact that dimC = d + 1.
(iii) This is immediate from (ii) and Proposition 5.4(i).
(iv) This is immediate from (ii) and Proposition 5.4(ii). O

Proposition 10.3 With reference to Definition 4.1,
(i) the map ¢* of Proposition 5.5 is injective,
(i) dimC* =d+ 1,
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(ili) xg,...,x} is a basis of C*,
(iv) e5,..., €} is a basis of C*.

Proof. Reverse the roles of C' and C* in Proposition 10.2. O

Proposition 10.4 With reference to Definition 4.1, we have C N C* = Span{1}.

Proof. Recall from Proposition 5.1 that 1 = z9 € C and 1 = z§ € C*, so Span{1} C CNC*. The
fact that C N C* C Span{l} is immediate from Propositions 10.2(iii), 10.3(iii), and Lemma 10.1. O

11 A Central Idempotent of 7

We now turn our attention to the algebraic structure of 7. In this section we introduce an element
ug of 7 and we use the reduction rules of section 7 to show that ug is a central idempotent. We
begin with another relation in 7.

Proposition 11.1 With reference to Definition 4.1,
d d
NZ ko leteper = NZ k:;_lejegej. (72)
r=0 j=0
We write ug to denote this element of T .

Proof. We have

d d
N Zok;_lejegej = ;)k;_lx;eox* (by Proposition 7.8(iv))
j= j=
d d d
= 2:0 2:0 ZO k‘;_lp;f_(s)p; (r)eteoes (by Proposition 5.6(iii))
j=0r=0s=
d d d
= ZO 20 ZO k‘;_lpj-(s)pj- (r)etepes (by Proposition 3.7(i) and (22))
J=Ur=us=
d d 1 d )
= > >miT > qs(h)pi(r)efee; (by (20))
r=0s=0 7=0
d
= N Zomi_leifeoeif (by (15))
r—=
d
= N klefeper, (by Proposition 3.6(iii))
r=0
as desired. O

Next we consider certain products involving wuyg.

Proposition 11.2 With reference to Definition 4.1, for 0 < i < d we have
(i) eup = Nk‘f_leieéei,
(i) wpe; = Nk;k_leiegei,
(i) efug = Nk; ‘elepef,
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(iv) upef = Nk; tefeper.

Proof. (i), (ii) Use the right side of (72) to eliminate uy and use Proposition 5.3(ii) to simplify the
result.

(iii), (iv) Use the left side of (72) to eliminate uy and use Proposition 5.6(ii) to simplify the
result. O

The following corollary of Proposition 11.2 will be useful later on.

Corollary 11.3 With reference to Definition 4.1,
(i) €o = €gUuop,
(ii) el = ejuo,
(i) ug # 0.
Proof. (i) Set i = 0 in Proposition 11.2(i) and use (16), (18) and Proposition 7.7(iv) to evaluate the
result.
(ii) This is similar to the proof (i).
(iii) This is immediate from (i) and Proposition 10.2(iv). O

Next we show that ug is a central idempotent of 7.

Proposition 11.4 With reference to Definition 4.1,
(i) ugt = tuog, (t S T)
(ii) ud = uo.

In other words, ug is a central idempotent of 7T .

Proof. (i) By Proposition 11.2, the element vy commutes with the elements eo,...,eq, €5, ..., €}
These elements generate 7 by Propositions 5.4(ii), 5.7(ii), and 5.8, so (i) holds.
(ii) We have

d
ud = <N %k;%jew?) (by (72))
7=
d
= N2k 2efegefeqe’ (by Proposition 11.2(iv))
i=0
d
= Nk tereger (by Proposition 7.7(ii))
i=0
= o,
as desired. O

We conclude this section by finding a decomposition of 7 as a direct sum of two sided ideals.
We omit the proof, which is routine.

Proposition 11.5 With reference to Definition 4.1,
(i) Tug is a nonzero two sided ideal of T,
(ii) 7(1 — ug) is a two sided ideal of T,
(i) 7 =Tuo+ T (1 —up) and the sum is direct.

We remark that in the introduction we wrote 7y and 77 to denote the ideals 7ug and 7 (1 — ug)
respectively.
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12 The Ideal 7 uy

In view of Proposition 11.5, we now restrict our attention to the ideal 7ug. By Proposition 11.4(ii),
the ideal 7ug is a C-algebra with identity wug; in this section we show that 7ug is C-algebra iso-

morphic to the full matrix algebra My, 1(C). We begin by describing several ways to recognize
TUO.

Proposition 12.1 With reference to Definition 4.1, and using the notation of Propositions 5.2 and
5.5, the vector spaces CeiC, C*eqC*, TeoT and TejT are all equal to Tuyg.

Proof. First observe that

CetC = Span{zjefry | 0<1i,j <d} (by Proposition 5.4(i))
= Span{ejepe; | 0 <i,j < d} (by Proposition 7.8(i))
= C*eC". (by Proposition 5.7(ii))

For the rest of the proof we write Tp = Ce;;C = C*eoC*.

By Proposition 5.8 the set CUC* generates 7, so we have 7Ty C Ty and Ty 7 C Ty; it follows that
Ty is a two sided ideal of 7. To see that Ty = Teg7, first observe that by construction Ty C 7 eg7 .
To obtain the reverse inclusion, observe that eg € Ty, so

TEOT - TT(]T
C Tp.
Therefore, Ty = TegT .
To see that Tp = Tej7, reverse the roles of C and C* in the above argument.
It remains to show that Tp = 7 ug. To do this, use Corollary 11.3(i) to find that ey € Tug, and

conclude that Ty = Teg7 C Tug. From the form of ug in (72) we see that uy € C*eoC* = Tp, so
Tuyg € Ty. We now have Ty = Tug, as desired. O

In the next proposition we present a basis for 7uy and compute products of these basis elements.

Proposition 12.2 With reference to Definition 4.1, write

Tij = Neie(";ej. (0 < Z,] < d) (73)
Then
(i) {Ys | 0<i,j <d} is a basis for Tuy,
(11) Tiij = (5]-,,ij,~8. (0 S i,j, r,Ss S d)

Proof. (i) We first show that Y;; # 0 for 0 < 4,j < d. Towards this end, let 4, j be given and use
Proposition 7.7(i) and the fact that e}? = ef to obtain
e Tijes = N tmymgep. (0<4,5<d)

Since N _1mimj # 0 and e # 0, we conclude that Y;; # 0. It is now routine using Proposition
5.3(ii) to show that {Y;; | 0 < ¢,j < d} is linearly independent. To see that these elements span
T ug, observe that

Span{T;; | 0 <i,j <d} = Span{eiefe; | 0<1,j<d} (by (73))
= CeyC (by Proposition 5.4(ii))
= Tuy, (by Proposition 12.1)
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as desired.
(i) Use (73) and Proposition 5.3(ii) to obtain

Tii Y rs = 5jTN2eieaejeSes. (0<i,5,r,s <d)
Now use Proposition 7.7(i) to eliminate eje;ef and compare the result with the right side of (73). O

We are now ready to describe the C-algebra structure of 7 uy.

Theorem 12.3 With reference to Definition 4.1, there exists a C-algebra isomorphism p : Tuy —
Mg11(C) such that
p(Lij) = mje;. (0<i,j <d) (74)

Proof. By Proposition 12.2(i), there exists a unique isomorphism of vector spaces p : Tuy —
M441(C) which satisfies (74). By Proposition 12.2(ii), this map is an isomorphism of C-algebras. O

Reversing the roles of C and C* in the previous two results, we obtain the following.

Proposition 12.4 With reference to Definition 4.1, write

T, = Nejege;. (0<i,j <d) (75)
Then
(1) {Y5; [ 0<4,j <d} is a basis for Tuo,
(i) Y505, = djpmi Y5 (0<i,j,r,s <d)

Theorem 12.5 With reference to Definition 4.1, there exists a C-algebra isomorphism p* : Tug —
Mg11(C) such that
P (15;) = mies;. (0<14,5 <d) (76)

13 The Ideal 7 uy, and the Primary Module

In this section we consider the connection between the ideal 7ug and the primary module. We begin
by describing the action of the basis elements T;; of Proposition 12.2 on the primary module.

Proposition 13.1 With reference to Definition 4.1, let V' denote the primary module for T and let
0, .. .,0q denote a standard basis of V. Then the elements Y;; of (73) satisfy

Yijvp = 8;,mjv;. (0<i,j,r <d) (77)
Proof. We have
Yiju, = Neejejvr (by (73))
= 6;rNejequj (by Proposition 9.4(i))
d

= djpmje; s;() Vs (by Proposition 9.4(iii), (16), and (19))

= 0jrmy;u;, (by Proposition 9.4(i))
as desired. O

Reversing the roles of C and C* in the previous proposition, we obtain the following.
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Proposition 13.2 With reference to Definition 4.1, let V' denote the primary module for T and let
VG- -+ Uy denote a dual standard basis of V. Then the elements Y7, of (75) satisfy

vy = 6jrmjv;. (0<i,j,r <d) (78)
Before stating the main theorem of this section, we recall two definitions.

Definition 13.3 With reference to Definition 4.1, let V' denote the primary module for T. We
write End(V') to denote the C-algebra of all linear maps from V to V. For 0 < i,j < d, we write
fij to denote the element of End(V') which has

fij(vr) = djr04, (0<r<d (79)

where vy, . .., vq is a standard basis of V.. We observe that {f;; | 0 < i,j < d} is a basis for End(V').
Similarly, for 0 <1, < d we write f}; to denote the element of End(V') which has

fij(or) = djrvi, (0<r<d (80)

1, s

where v, ..., v} s a dual standard basis of V.. We observe that {f; | 0 < i,j < d} is a basis for
End(V).

Definition 13.4 With reference to Definition 4.1, let V' denote the primary module for T. Since
V' is a T-module, there exists a natural C-algebra homomorphism from T to End(V). We write n
to denote this map, and we observe that

n(t)(v) = to. teT,veV) (81)
We conclude this section by describing the action of 7 on the ideals Tuy and 7 (1 — ug).

Theorem 13.5 With reference to Definition 4.1, let V denote the primary module for T and let
n: 7T — End(V) denote the map of Definition 13.4. Then the restriction of n to the ideal Tug is
an isomorphism of C-algebras and kern = T (1 — ug). Moreover,

n(Yij) = my fi (0<i,j <d) (82)

and

n(y) = mi £ (0<ij<d) (33)
Proof. Line (82) is immediate from (77), (79), and (81); line (83) is immediate from (78), (80),
and (81). Let 7y denote the restriction of 1 to Tuy and observe that 7y is a homomorphism of
C-algebras. Combining (82), the fact that {Y;; | 0 <4,j < d} is a basis for 7ug, and the fact that
{fij 10 <i,5 < d} is a basis for End(V'), we see that ng is a bijection. It follows that 7o is an
isomorphism of C-algebras. It is routine to show kern = 7(1 — uyg). O

14 Modules for 7

In this section we investigate arbitrary 7-modules. We begin by using the central idempotent ug
to write an arbitrary 7-module as a direct sum of two submodules. We omit the proof, which is
routine.
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Proposition 14.1 With reference to Definition 4.1, suppose W is a T -module. Then
(1) woW is a T -submodule of W,
(ii) (1 —uo)W is a T-submodule of W,
(iii) W = ugW + (1 — uog)W and the sum is direct.

In the next proposition we give several ways of recognizing ugW .

Proposition 14.2 With reference to Definition 4.1, suppose W is a T-module. Then each of
TeoW, TegW, CefW, and C*egW is equal to ugW .

Proof. Observe that uyg € C*egC* by (72), and C*W C W, so ugW C C*egW. Clearly C*e¢WW C
TeogW. Recall eg = egug by Corollary 11.3(i) and recall that ug is central in 7, so
TEOW = TGQ’LL(]W
- ’LL(]W
From these remarks, we see that ugW, C*eqW, and 7egW are all equal. Reversing the roles of C
and C* in the above argument, we see that uoW, CegW, and TejW are all equal. O

Now we relate ugW to the primary module.

Proposition 14.3 With reference to Definition 4.1, suppose W is a T -module. For any irreducible
T -submodule V' of W, the following are equivalent.

(i) \%4 - ’LL(]W.

(ii) V is T -module isomorphic to the primary module.

Proof. (i) = (ii) In view of Propositions 8.3(ii) and 8.4, we need only show that eyV # 0. To do
this, observe that

V = UOV
- Te()TV (by (72))
C TegV, (since V is a T-module)

so eV # 0, as desired.
(ii) = (i) Recall that uy acts as the identity on the primary module so V = uyV C uoW. O

With reference to Definition 4.1, suppose W is a 7-module. Since ug acts as the identity on
upW, we may view ugWW as a module for 7ug. We showed in Theorem 12.3 that 7T ug is C-algebra
isomorphic to Mg41(C), so ugW is completely reducible. We conclude the paper by mentioning a
few consequences of these ideas.

Proposition 14.4 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
For every T -submodule A of ugW there exists a T-submodule B of ugW such that

uW = A+ B. (direct sum)

Proposition 14.5 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then there exist a nonnegative integer m and T -submodules Uq,...,U,, of ugW such that each U;
is T -module isomorphic to the primary module and such that

uW = Z Ui. (direct sum) (84)
i=1
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Proposition 14.6 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then ugW = >_ U, where the sum is over all T-submodules U of W such that U is isomorphic to
the primary module.

Proof. This is immediate from Propositions 14.3 and 14.5. O

Proposition 14.7 With reference to Definition 4.1, suppose W is a finite dimensional T -module.
Then
dim egW = dim e W, (85)

and this quantity is equal to the multiplicity with which the primary module appears in ugW .
Proof. We show that both sides of (85) are equal to the multiplicity with which the primary module

appears in ugW. To do this, first observe that this multiplicity is given by m in (84). Now apply eg
to both sides of (84) and use Corollary 11.3(i) to obtain

eoW = Z eoU;. (direct sum)
i=1

It follows that

dimegW = dim eqU;

s

@
Il
—

(by Proposition 8.3(i))

I

Il
=1

Reversing the roles of C' and C* in the above argument, we find that dimegW = m, as desired. O
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