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Abstract
We first give a combinatorial interpretation of Everitt, Littlejohn, and Wellman’s Legendre-Stirling

numbers of the first kind. We then give a combinatorial interpretation of the coefficients of the polyno-
mial (1 − x)3k+1∑∞

n=0

{{
n+k

n

}}
xn analogous to that of the Eulerian numbers, where

{{
n
k

}}
are Everitt,

Littlejohn, and Wellman’s Legendre-Stirling numbers of the second kind. Finally we use a result of
Bender to show that the limiting distribution of these coefficients as n approaches infinity is the normal
distribution.
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1 Introduction

Following Knuth [6], let
[
n
k

]
and

{
n
k

}
denote the (unsigned) Stirling numbers of the first and second kinds,

respectively, which may be defined by the initial conditions[
n

0

]
= δn,0,

[
0
k

]
= δk,0 (1)

and {
n

0

}
= δn,0,

{
0
k

}
= δk,0 (2)

and recurrence relations [
n

k

]
=
[
n− 1
k − 1

]
+ (n− 1)

[
n− 1
k

]
, (n, k ∈ Z), (3)

and {
n

k

}
=
{
n− 1
k − 1

}
+ k

{
n− 1
k

}
, (n, k ∈ Z). (4)

It is well known that
[
n
k

]
and

{
n
k

}
have a variety of interesting algebraic properties; for instance,[

n

k

]
=
{
−k
−n

}
, (n, k ∈ Z), (5)

n∑
k=1

(−1)j+k

[
i

k

]{
k

j

}
= δi,j , (1 ≤ i, j ≤ n), (6)

and
n∑

k=1

(−1)j+k

{
i

k

}[
k

j

]
= δi,j , (1 ≤ i, j ≤ n). (7)
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The Stirling numbers of each kind also have combinatorial interpretations: for n ≥ 1 and k ≥ 1 the quantity[
n
k

]
is the number of permutations of [n] with exactly k cycles, while

{
n
k

}
is the number of partitions of [n]

with exactly k blocks.
Recently Everitt, Littlejohn, and Wellman introduced [4] the Legendre-Stirling numbers of the second

kind, which may be defined by the initial conditions{{n
0

}}
= δn,0,

{{
0
k

}}
= δk,0 (8)

and recurrence relation{{n
k

}}
=
{{
n− 1
k − 1

}}
+ k(k + 1)

{{
n− 1
k

}}
, (n, k ∈ Z). (9)

It is not difficult to show that when n ≥ 1 we have

xn =
n∑

j=0

{{
n

j

}}
〈x〉j , (10)

where 〈x〉j = x(x−2)(x−6) · · · (x− (j−1)j). These numbers first arose in the study of a certain differential
operator related to Legendre polynomials, but Andrews and Littlejohn [1] have given them the following
combinatorial interpretation. For each n ≥ 1, let [n]2 denote the set {11, 12, 21, 22, . . . , n1, n2}, which consists
of two distinguishable copies of each positive integer from 1 to n. By a Legendre-Stirling set partition of [n]2
into k blocks we mean an ordinary set partition of [n]2 into k + 1 blocks for which the following hold.

1. One block, called the zero block, is distinguished, but all other blocks are indistinguishable.

2. The zero block may be empty, but all other blocks are nonempty.

3. The zero block may not contain both copies of any number.

4. Each nonzero block contains both copies of the smallest number it contains, but does not contain both
copies of any other number.

Then Andrews and Littlejohn have shown [1] that the number of Legendre-Stirling set partitions of [n]2 into
k blocks is

{{
n
k

}}
, by showing that these two quantities satisfy the same initial conditions and recurrence

relation.
In this paper we prove Legendre-Stirling analogues of a variety of results concerning Stirling numbers of

the first and second kinds. In section 2 we give a recursive definition of the Legendre-Stirling numbers of the
first kind, which we denote by

[[
n
k

]]
. We then prove analogues of (5), (6), and (7) for the Legendre-Stirling

numbers, and we give a combinatorial interpretation of
[[

n
k

]]
in terms of pairs of permutations of [n] with k

cycles. In sections 3 and 4 we turn our attention to fk(n) =
{{

n+k
n

}}
and gk(n) =

[[
n−1

n−k−1

]]
, which are the

kth northwest to southeast diagonals of the second and first Legendre-Stirling triangles, respectively. We
show that fk(n) is a polynomial of degree 3k in n with fk(0) = fk(−1) = · · · = fk(−k−1) = 0; we show that
similar results hold for gk(n) by showing that gk(n) = (−1)kfk(−n). These results, together with standard
facts concerning rational generating functions, imply that there exist integers Bk,j such that

∞∑
n=0

fk(n)xn =

∑2k−1
j=1 Bk,jx

j

(1− x)3k+1
.

We give two combinatorial interpretations of Bk,j , the second of which involves descents in a certain family of
permutations, which we call Legendre-Stirling permutations. The results in these two sections are analogues
of results of Gessel and Stanley [5] concerning the Stirling numbers. In section 5 we first show that for any
k ≥ 1 the sequence {Bk,j}2k−1

j=1 is unimodal. We then turn our attention to the random variable Xk, which
is the number of descents in a uniformly chosen Legendre-Stirling permutation. We show that

E[Xk] =
6k − 1

5
, (k ≥ 1),
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and

V ar[Xk] =
(k − 1)(108k + 99)

525k − 175
, (k ≥ 1),

and we combine these results with a theorem of Bender to show that
{

Xk−E[Xk]√
V ar[Xk]

}∞
k=1

converges in distribution

to the standard normal variable. These results are analogues of results of Bóna [3] concerning the Stirling
numbers.

2 Legendre-Stirling Numbers of the First Kind

Andrews and Littlejohn [1] define the Legendre-Stirling numbers of the first kind
[[

n
k

]]
via

〈x〉n =
n∑

j=0

(−1)n+j

[[
n

j

]]
xj , (11)

where 〈x〉j = x(x− 2)(x− 6) · · · (x− (j− 1)j) as above, but they say nothing else about these quantities. In
this section we give a recursive definition of

[[
n
k

]]
, which we use to prove analogues of (5), (6), and (7) and

to give a combinatorial interpretation of
[[

n
k

]]
.

Definition 2.1 For all n, k ∈ Z we write
[[

n
k

]]
to denote the (signless) Legendre-Stirling numbers of the

first kind, which are given by the initial conditions[[n
0

]]
= δn,0,

[[
0
k

]]
= δk,0, (12)

and recurrence relation [[n
k

]]
=
[[
n− 1
k − 1

]]
+ n(n− 1)

[[
n− 1
k

]]
, (n, k ∈ Z). (13)

It is not difficult to show that (11) and Definition 2.1 are equivalent for n, k ≥ 1, so we turn our attention
to an analogue of (5).
Theorem 2.2 For all n, k ∈ Z, {{

−k
−n

}}
= (−1)k+n

[[
n− 1
k − 1

]]
. (14)

Proof. The Legendre-Stirling numbers of the second kind are uniquely determined by (8) and (9), so it is
sufficient to show that the numbers L(n, k) = (−1)k+n

[[
−k−1
−n−1

]]
also satisfy (8) and (9).

To prove L(n, k) satisfies the left equation in (8), first note that L(1, 0) = 0 by (12). Now if n 6= 1 then
set n = 0 and k = n in (13) and use (12) to find that L(n, 0) = δn,0. The proof that L(n, k) satisfies the
right equation in (8) is similar. To prove that L(n, k) satisfies (9), note that if n 6= 0 and k 6= 0 then we have

L(n− 1, k − 1) = (−1)n+k

(
−k(−k − 1)

[[
−k − 1
−n

]]
+
[[
−k − 1
−n− 1

]])
= −(−1)n+k−1k(k + 1)

[[
−k − 1
−n

]]
+ (−1)n+k

[[
−k − 1
−n− 1

]]
= −k(k + 1)L(n− 1, k) + L(n, k),

and the result follows. 2

The following analogues of (6) and (7) are clear from the relationship between (10) and (11), but for
completeness we give a proof using the recursive definitions of

[[
n
k

]]
and

{{
n
k

}}
.
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Theorem 2.3 If n ≥ 1 then for all i, j with 1 ≤ i, j ≤ n we have

n∑
k=1

(−1)k+j

[[
i

k

]]{{
k

j

}}
= δi,j (15)

and
n∑

k=1

(−1)k+j

{{
i

k

}}[[
k

j

]]
= δi,j . (16)

Proof. To prove (15), first note that if i < n then
[[

i
n

]]
= 0, and the result follows by induction on n. On

the other hand, if i = n then by (13), (9), and induction on n we have

n∑
k=1

(−1)k+j
[[n
k

]]{{k
j

}}
=

n∑
k=1

(−1)k+j

(
n(n− 1)

[[
n− 1
k

]]
+
[[
n− 1
k − 1

]]){{
k

j

}}

= n(n− 1)
n−1∑
k=1

(−1)k+j

[[
n− 1
k

]]{{
k

j

}}
+

n−1∑
k=1

(−1)k+j

[[
n− 1
k − 1

]]{{
k

j

}}

= δj,n−1n(n− 1) +
n−1∑
k=1

(−1)k+j

[[
n− 1
k − 1

]]({{
k − 1
j − 1

}}
+ j(j + 1)

{{
k − 1
j

}})
= δj,n−1n(n− 1) + δn,j − δj,n−1j(j + 1)
= δn,j .

The proof of (16) is similar to the proof of (15). 2

The Stirling numbers of the first kind count permutations of [n] with k cycles; we conclude this sec-
tion with an analogous interpretation of the Legendre-Stirling numbers of the first kind. Here the cy-
cle maxima of a given permutation are the numbers which are largest in their cycles. For example, if
π = (4, 6, 1)(9, 2, 3)(7, 8) is a permutation in S10, written in cycle notation, then its cycle maxima are
5, 6, 8, 9, and 10.
Definition 2.4 A Legendre-Stirling permutation pair of length n is an ordered pair (π1, π2) with π1 ∈ Sn+1

and π2 ∈ Sn for which the following hold.

1. π1 has one more cycle than π2.

2. The cycle maxima of π1 which are less than n+ 1 are exactly the cycle maxima of π2.

Theorem 2.5 For all n ≥ 0 and all k with 0 ≤ k ≤ n, the number of Legendre-Stirling permutation pairs
(π1, π2) of length n in which π2 has exactly k cycles is

[[
n
k

]]
.

Proof. Let an,k denote the number of Legendre-Stirling permutation pairs (π1, π2) of length n in which π2

has exactly k cycles. It is clear that an,0 = δn,0 and a0,k = δk,0, so in view of (13) it is sufficient to show
that if n > 0 and k > 0 then an,k = n(n − 1)an−1,k + an−1,k−1. To do this, first note that by condition 3
of Definition 2.4, if (π1, π2) is a Legendre-Stirling permutation pair of length n then 1 is a fixed point in π1

if and only if it is a fixed point in π2. Pairs (π1, π2) in which 1 is a fixed point are in bijection with pairs
(σ1, σ2) of length n−1 in which σ2 has k−1 cycles by removing the 1 from each permutation and decreasing
all other entries by 1. Each pair (π1, π2) in which 1 is not a fixed point may be constructed uniquely by
choosing a pair (σ1, σ2) of length n− 1 in which σ2 has k cycles, increasing each entry of each permutation
by 1, and inserting 1 after an entry of each permutation. There are an−1,k pairs (σ1, σ2), there are n ways
to insert a new entry into σ1, and there are n− 1 ways to insert a new entry into σ2. Now the result follows.
2
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3 Legendre-Stirling Polynomials

It is natural to arrange the Legendre-Stirling numbers of each kind in a triangle; Figures 1 and 2 show the
first five rows of each of these triangles. Following Gessel and Stanley’s study [5] of the Stirling numbers of
each kind, in this section we give some elementary properties of the sequences parallel to the upper right
sides of these triangles.

1
2 1

12 8 1
144 108 20 1

2880 2304 508 40 1

Figure 1: The First Legendre-Stirling Triangle.

1
2 1

4 8 1
8 52 20 1

16 320 292 40 1

Figure 2: The Second Legendre-Stirling Triangle.

Beginning with the second Legendre-Stirling triangle, it is not difficult to show that{{n
n

}}
= 1, (n ≥ 1), (17){{

n+ 1
n

}}
= 2
(
n+ 1

3

)
+ 2
(
n+ 1

2

)
, (n ≥ 1), (18)

and {{
n+ 2
n

}}
= 40

(
n+ 2

6

)
+ 72

(
n+ 2

5

)
+ 36

(
n+ 2

4

)
+ 4
(
n+ 2

3

)
, (n ≥ 1). (19)

These formulas suggest the following result.

Theorem 3.1 For all k ≥ 0, the quantity
{{

n+k
n

}}
is a polynomial of degree 3k in n with leading coefficient

1
3kk!

. We write fk(n) to denote this polynomial; then for all k ≥ 1 and all n ∈ Z we have

fk(n) = n(n+ 1)fk−1(n) + fk(n− 1). (20)

Proof. The result is immediate for k = 0, so suppose k ≥ 1; we argue by induction on k.
By (9) we have {{

n+ k

n

}}
−
{{
n− 1 + k

n− 1

}}
= n(n+ 1)

{{
n+ k − 1

n

}}
(21)

for all n ∈ Z. By induction this implies that the first difference sequence for
{{

n+k
n

}}
is a polynomial of

degree 3k − 1 in n, so
{{

n+k
n

}}
is a polynomial of degree 3k in n. Let fk(n) denote this polynomial; now

(20) is immediate from (21). Iterating (21) and using the left equation in (8) we find that if n ≥ 1 then

fk(n) =
n∑

j=1

j(j + 1)fk−1(j).

Since
∑n

j=0 j
3k−1 is a polynomial of degree 3k in n with leading coefficient 1

3k , by induction the leading
coefficient of fk(n) is 1

3kk!
. 2

Although one can use the same methods to prove an analogue of Theorem 3.1 for the first Legendre-
Stirling triangle, we take a different approach.

Theorem 3.2 For all k ≥ 0, the quantity
[[

n−1
n−k−1

]]
is a polynomial of degree 3k in n with leading coefficient

1
3kk!

. We write gk(n) to denote this polynomial; then for all k ≥ 1 and all n ∈ Z we have

gk(n) = gk(n− 1) + (n− 1)(n− 2)gk−1(n− 1). (22)
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Proof. By (14) we have [[
n− 1

n− k − 1

]]
= (−1)kfk(−n) (23)

for all k ≥ 0; now the result follows from Theorem 3.1. 2

The relationship between fk and gk implied by (23) is worth noting, since it will be useful later on.
Corollary 3.3 For all k ≥ 0 we have

gk(n) = (−1)kfk(−n). (24)

Proof. This is immediate from (23). 2

The forms of f1(n) and f2(n) in (18) and (19) also suggest the following results concerning the roots of
fk and gk.
Theorem 3.4 If k ≥ 1 then

fk(0) = fk(−1) = · · · = fk(−k) = fk(−k − 1) = 0 (25)

and
gk(0) = gk(1) = · · · = gk(k) = gk(k + 1) = 0. (26)

Proof. When k = 1 line (25) is immediate from (18), so suppose k > 1; we argue by induction on k.
By the left equation in (8) we have fk(0) = 0, and by (20) we have

fk(n)− fk(n− 1) = n(n+ 1)fk−1(n).

By induction the expression on the right is zero for 0 ≤ n ≤ −k, and the result follows.
In view of (24), line (26) is immediate from (25). 2

4 Legendre-Stirling Permutations

We now turn our attention to the generating functions for fk(n) and gk(n), which are given by

Fk(x) =
∞∑

n=0

fk(n)xn (27)

and

Gk(x) =
∞∑

n=0

gk(n)xn. (28)

By (26) and standard results concerning rational generating functions (see [8, Cor. 4.6], for instance), there
exist integers Bk,j such that

Fk(x) =

∑2k−1
j=1 Bk,jx

j

(1− x)3k+1
, (k ≥ 1), (29)

and

Gk(x) =
xk+1

∑2k−1
j=1 Bk,3k−2−jx

j

(1− x)3k+1
, (k ≥ 1). (30)

In this section we give two combinatorial interpretations of Bk,j . We begin with a recurrence relation for
Fk(x), which we use to obtain a recurrence relation for Bk,j .
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Theorem 4.1 We have
F0(x) =

1
1− x

(31)

and

Fk(x) =
x

1− x
d2

dx2
(xFk−1(x)) , (k ≥ 1). (32)

Moreover, we also have B1,j = 2δj,1 and

Bk,j = j(j + 1)Bk−1,j + 2j(3k − 1− j)Bk−1,j−1 + (3k − j)(3k − 1− j)Bk−1,j−2. (33)

Proof. Line (31) is immediate from (17), and by (20) we have

Fk(x) =
∞∑

n=0

n(n+ 1)fk−1(n)xn +
∞∑

n=0

fk(n− 1)xn

= x
d2

dx2
(xFk−1(x)) + xFk(x),

from which (32) follows.
Now set k = 1 in (32) and use (31) to find that F1(x) = 2x

(1−x)4 ; hence B1,j = 2δj,1, as claimed. To obtain
(33), first use (29) to eliminate Fk−1(x) on the right side of (32) and simplify the result to find that

Fk(x) =

∑2k−3
j−1 j(j + 1)Bk−1,jx

j

(1− x)3k−1
+

2(3k − 2)
∑2k−3

j−1 (j + 1)Bk−1,jx
j+1

(1− x)3k

+
(3k − 2)(3k − 1)

∑2k−3
j−1 Bk−1,jx

j+2

(1− x)3k+1
.

Now use (29) to eliminate Fk(x) and clear denominators to obtain

2k−1∑
j=1

Bk,jx
j = (1− x)2

2k−3∑
j=1

(j + 1)jBk−1,jx
j+2(1− x)(3k − 2)

2k−3∑
j=1

(j + 1)Bk−1,jx
j+1

+ (3k − 2)(3k − 1)
2k−3∑
j=1

Bk−1,jx
j+2.

Finally, equate coefficients of xj to complete the proof. 2

We have the following analogue of Theorem 4.1 for Gk(x).
Theorem 4.2 We have

G1(x) =
1

1− x
(34)

and

Gk(x) =
x3

1− x
d2

dx2
(Gk−1(x)) , (k ≥ 1). (35)

Proof. This is similar to the proof of (31) and (32), using (22). 2

Since B1,j = 2δj,1, line (33) implies that Bk,j is a nonnegative integer for all k. We give two combinatorial
interpretations of Bk,j . The first is inspired by Riordan’s interpretation [7, p. 9] of similar numbers arising
in the study of the usual Stirling numbers, which he gives in terms of trapezoidal words.
Definition 4.3 For any positive integer n, a Legendre-Stirling word on 2n letters is a word a1a2 · · · a2n such
that for all j with 1 ≤ j ≤ n, the entries a2j−1 and a2j are distinct numbers from among 1, 2, . . . , 3j − 1.
Theorem 4.4 The number of Legendre-Stirling words on 2k letters with exactly j + 1 different entries is
Bk,j.
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Proof. Let bk,j denote the number of Legendre-Stirling words on 2k letters with exactly j + 1 different
entries. The numbers Bk,j are determined by (33) and the fact that B1,j = 2δj,1, so it is sufficient to show
that bk,j also satisfies these conditions.

The only two Legendre-Stirling words on 2 letters are 12 and 21, so b1,j = 2δj,1. Now suppose k > 1.
Every Legendre-Stirling word on 2k letters with exactly j + 1 different entries may be uniquely constructed
by choosing a Legendre-Stirling word on 2k − 2 letters and appending two distinct numbers a2k−1 and a2k

from among 1, 2, . . . , 3k − 1. To ensure the resulting word has exactly j + 1 different entries, we may start
with a word with exactly j − 1 different entries and append two numbers which do not already appear,
we may start with a word with exactly j different entries and append one number which already appears
and one which does not, or we may start with a word with exactly j + 1 different entries and append two
numbers which already appear. These constructions may be carried out in (3k − j)(3k − 1 − j)bk−1,j−2,
2j(3k − 1− j)bk−1,j−1, and j(j + 1)bk−1,j ways, respectively, and the result follows. 2

Our second interpretation of Bn,k is inspired by similar results concerning the Eulerian numbers and the
usual Stirling numbers. In particular, if ak(n) = nk and Ak(x) =

∑∞
n=0 ak(n)xn then there are nonnegative

integers Ak,j such that

Ak(x) =

∑k
j=1Ak,jx

j

(1− x)k+1
, (k ≥ 1).

Moreover, these Ak,j are the Eulerian numbers, so Ak,j is the number of permutations in Sk with exactly
j descents. Similarly, Gessel and Stanley [5] have shown that if ck(n) =

{
n+k

n

}
and Ck(x) =

∑∞
n=0 ck(n)xn

then there are nonnegative integers Ck,j such that

Ck(x) =

∑k
j=1 Ck,jx

j

(1− x)2k+1
, (k ≥ 1).

Moreover, Gessel and Stanley have given a set of permutations of a certain multiset such that Ck,j is the
number of these permutations with exactly j descents. In view of these results, we would like an interpretation
of Bk,j involving descents in a family of permutations.
Definition 4.5 For each n ≥ 1, let Mn denote the multiset

Mn = {1, 1, 1, 2, 2, 2, . . . , n, n, n},

in which we have two unbarred copies of each integer j with 1 ≤ j ≤ n and one unbarred copy of each
such integer. Then a Legendre-Stirling permutation π is a permutation of Mn such that if i < j < k and
π(i) = π(k) are both unbarred, then π(j) > π(i). A descent in a Legendre-Stirling permutation π is a number
i, 1 ≤ i ≤ 3n, such that i = 3n or π(i) > π(i+ 1).
Theorem 4.6 The number of Legendre-Stirling permutations of Mk with exactly j descents is Bk,j.

Proof. Let bk,j denote the number of Legendre-Stirling permutations of Mk with exactly j descents. As in
the proof of Theorem 4.4, it is sufficient to show that bk,j satisfies the same recurrence and initial conditions
as Bk,j .

The only two Legendre-Stirling permutations of M1 are 111 and 111; each of these has one descent,
so b1,j = 2δj,1. Now suppose k > 1. Every Legendre-Stirling permutation of Mk may be constructed by
choosing a Legendre-Stirling permutation of Mk−1, inserting k between two entries, and then inserting the
pair kk between two entries of this new permutation. We may ensure the resulting permutation has exactly
j descents in four ways.

The first way is to choose a permutation of Mk−1 with j descents, insert k immediately after a descent,
and insert kk immediately after a descent or immediately before k. In this case there are bk−1,j ways to
choose the initial permutation, j ways to insert k, and j + 1 ways to insert kk.

The second way is to choose a permutation of Mk−1 with j − 1 descents, insert k immediately after a
descent, and insert kk immediately after a nondescent, but not immediately to the left of k. In this case
there are bk−1,j−1 ways to choose the initial permutation, j − 1 ways to insert k, and 3k − 1 − j ways to
insert kk.
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The third way is to choose a permutation of Mk−1 with j − 1 descents, insert k immediately after a
nondescent, and insert kk immediately after a descent or immediately to the left of k. In this case there are
bk−1,j−1 ways to choose the initial permutation, 3k − 1− j ways to insert k, and j + 1 ways to insert kk.

The fourth way is to choose a permutation of Mk−1 with j − 2 descents, insert k immediately after a
nondescent, and insert kk immediately after a nondescent, but not immediately to the left of k. In this case
there are bk−1,j−2 ways to choose the initial permutation, 3k − j ways to insert k, and 3k − 1 − j ways to
insert kk.

Combining all of these, we find that

bk,j = j(j + 1)bk,j + 2j(3k − 1− j)bk−1,j−1 + (3k − j)(3k − 1− j)bk−1,j−2,

as desired. 2

We conclude this section with a bijective proof of Theorem 4.6. In particular, we give a bijective proof
that

∞∑
n=0

fk(n)xn =

∑2k−1
j=1 bk,jx

j

(1− x)3k+1
, (36)

where bk,j is the number of Legendre-Stirling permutations of Mk with exactly j descents. Recall from the
Introduction that we have a combinatorial interpretation of fk(n) in terms of set partitions; we now give a
combinatorial interpretation of the coefficient of xn in the expression on the right.

For any Legendre-Stirling permutation π, written in one-line notation, let the spaces of π be the spaces
between consecutive entries of π, along with the space before the first entry and the space after the last
entry. Then a slashed Legendre-Stirling permutation is a Legendre-Stirling permutation in which spaces may
contain one or more slashes. For example, \\121\12\\\2 is a slashed Legendre-Stirling permutation of M2.
For any k, n ≥ 0, let Pk,n denote the set of slashed Legendre-Stirling permutations of Mk with n slashes, in
which every descent contains at least one slash. Then we have the following expression for the generating
function for |Pk,n|.
Lemma 4.7 For all k ≥ 1 we have

∞∑
n=0

|Pk,n|xn =

∑2k−1
j=1 bk,jx

j

(1− x)3k+1
.

Proof. Note that we can uniquely construct all slashed Legendre-Stirling permutations of Mk by choosing
a Legendre-Stirling permutation of Mk, inserting a slash into each descent, and then inserting arbitrarily
many slashes into each of the 3k + 1 spaces. Thus,

∞∑
n=0

|Pk,n|xn =

2k−1∑
j=1

bk,jx
j

(1 + x+ x2 + · · ·
)3k+1

=

∑2k−1
j=1 bk,jx

j

(1− x)3k+1
,

as desired. 2

Bijective Proof of Theorem 4.6. In view of Lemma 4.7, it is sufficient to give a bijection between Pk,n and
the set of Legendre-Stirling set partitions of [n + k]2 into n blocks. To begin, we first observe that every
slashed Legendre-Stirling permutation in Pk,n may be uniquely constructed as follows. Begin with a (possibly
empty) row of slashes; these will be the slashes which do not appear between any two js in our final slashed
Legendre-Stirling permutation. Now for each j, 1 ≤ j ≤ k, first insert j to the left of a slash, then insert jj
to the left of j or to the left of a slash, and then insert a (possibly empty) row of slashes between j and j.

To describe the image of a given slashed Legendre-Stirling permutation π under our bijection, we describe
how to construct this image as we construct π. First number the slashes in our initial row of slashes
1, 2, . . . ,m, from left to right, and begin the Legendre-Stirling partition with blocks {i1, i2}, where 1 ≤ i ≤ m.
When we insert j immediately to the left of slash r, we put copy 1 of the smallest unused number into the
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block whose smallest elements are r1 and r2. When we insert jj immediately to the left of slash s, we put
copy 2 of the smallest unused number into the block whose smallest elements are s1 and s2. If that block
also contains copy 1 of same number, then we move copy 1 of that number to the zero block. When we insert
jj immediately to the left of j, we put copy 2 of the smallest available number into the zero block. Finally,
when we insert slashes between j and j, we number them consecutively from left to right, beginning with
the smallest available number.

It is not difficult to give a recursive description of the inverse of this procedure, so this map is a bijection.
2

5 The Distribution of the Number of Descents

Suppose k ≥ 1, and let Xk denote the random variable whose value is the number of descents in a Legendre-
Stirling permutation of Mk, chosen uniformly at random. Figure 3 shows the distribution of Xk when k = 8
in blue, along with the normal distribution with the same mean and standard deviation in red. Inspired
by examples like this one, and by analogous work of Bóna [3] concerning Gessel and Stanley’s Stirling
permutations, in this section we prove that for each k ≥ 1 the sequence {Bk,j}2k−1

j=1 is unimodal, and that
Xk approaches a normal variable as k goes to infinity.

5 10 15

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3: The distribution of X8 and the normal distribution.

To prove {Bk,j}2k−1
j=1 is unimodal, we show that the polynomial

Bk(x) =
2k−1∑
j=1

Bk,jx
j

has distinct, real, nonpositive roots. To do this, let Ck(x) be given by

Ck(x) = (1− x)3k+2 d

dx

(
x(1− x)−1−3kBk(x)

)
, (k ≥ 1). (37)

The table in Figure 4 gives Ck(x) for 1 ≤ k ≤ 4. Since Bk(x) is a polynomial of degree 2k − 1, we see that

k Ck(x)
1 4x(1 + x)
2 4x(2 + 23x+ 36x2 + 9x3)
3 16x(1 + 49x+ 351x2 + 639x3 + 324x4 + 36x5)
4 16x(2 + 335x+ 7056x2 + 40266x3 + 79470x4 + 57771x5 + 14400x6 + 900x7)

Figure 4: The polynomials C1(x), C2(x), C3(x), and C4(x).
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Ck(x) is a polynomial of degree 2k. Moreover, since every nonempty Legendre-Stirling permutation has at
least one descent, we have Bk(0) = 0 for all k ≥ 1; now it follows from (37) that Ck(0) = 0 for all k ≥ 1. We
can now show that the nonzero roots of Bk(x) and Ck(x) are negative, by showing they are intertwined.
Theorem 5.1 For all k ≥ 1, the polynomials Bk(x) and Ck(x) have distinct, real, nonpositive roots. In
particular, their sequences of coefficients are unimodal.

Proof. The result is clear for k = 1, since B1(x) = 2x and C1(x) = 4x + 4x2. Now suppose k > 1 and
Bk−1(x) and Ck−1(x) have distinct, real, nonpositive roots; we argue by induction on k.

To see that Bk(x) has distinct, real, nonpositive roots, first use (32) and the fact that Fk(x) = Bk(x)
(1−x)3k+1

to show that
Bk(x) = x(1− x)3k d

dx

(
(1− x)1−3kCk−1(x)

)
. (38)

By Rolle’s Theorem, Bk(x) has a root strictly between each pair of consecutive roots of Ck−1(x); including
0, this accounts for 2k − 2 of the 2k − 1 roots of Bk(x). To find the last root, let α < 0 denote the leftmost
root of Ck−1(x); by (38) we have Bk(α) = α(1− α)C ′k−1(α). Since the degree of Ck−1(x) is 2k − 2 we have
limx→−∞ Ck−1(x) =∞. Now since the roots of Ck−1(x) are distinct we find C ′k−1(α) < 0; hence Bk(α) > 0.
But the degree of Bk(x) is 2k − 1, so limx→−∞Bk(x) = −∞, and therefore Bk(x) has a root which is less
than α. Now it follows that Bk(x) has distinct, real, nonpositive roots.

The proof that Ck(x) has distinct, real, nonpositive roots is similar, using (37).
It is well known that if a polynomial has only real, negative roots then its sequence of coefficients is

unimodal; see Wilf’s book [9, Prop. 4.26 and Thm. 4.27] for a proof of this fact. 2

We now turn our attention to the distribution of the number of descents in a randomly chosen Legendre-
Stirling permutation. To state our result precisely, we introduce some notation. For all k ≥ 1, let pk(x) be
the probability generating function for Xk, so that

pk(x) =
2k−1∑
j=1

P (Xk = j)xj ,

where P (Xk = j) is the probability that Xk = j. In addition, for all k ≥ 1 let Zk be the random variable
given by Zk = Xk−E[Xk]√

V ar[Xk]
. Here

E[Xk] =
2k−1∑
j=1

jP (Xk = j)

is the usual expected value of Xk and

V ar[Xk] =
2k−1∑
j=1

(E(Xk)− j)2P (Xk = j)

is the usual variance of Xk. We recall that

V ar[Xk] = E[X2
k ]− E[Xk]2, (k ≥ 1). (39)

In our main result we prove that {Zk}∞k=1 converges in distribution to the standard normal variable; to prove
this, we use the following result of Bender.
Theorem 5.2 [2] Suppose Xk and pk(x) are as above. If all of the roots of pk(x) are real and

lim
k→∞

V ar[Xk] =∞ (40)

then {Zk}∞k=1 converges in distribution to the standard normal variable.

Since pk(x)
(∑2k−1

j=1 Bk,j

)
= Bk(x), Theorem 5.1 implies all of the roots of pk(x) are real. To prove (40),

we first set some additional notation. For all positive integers k and j, let Y Bk,j be the indicator variable
for the event that j is not the bottom of a descent in a uniformly chosen Legendre-Stirling permutation of
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Mk. Similarly, let Y Lk,j (resp. Y Rk,j) be the indicator variable for the event that the left (resp. right) j is
not the bottom of a descent in a uniformly chosen Legendre-Stirling permutation of Mk. Observe that

Xk = 3k + 1−
k∑

j=1

(Y Bk,j + Y Lk,j + Y Rk,j) . (41)

We prove (40) by first obtaining an explicit formula for V ar[Xk]; as a first step, we obtain recurrences for
the expected values of Y Bk,j , Y Lk,j , and Y Rk,j .
Lemma 5.3 Fix k ≥ 2 and let Y be one of Y B, Y L, and Y R. Then we have E[Yk,k] = 1 and

E[Yk,j ] =
3k − 3
3k − 1

E[Yk−1,j ], (1 ≤ j < k). (42)

Proof. The fact that E[Yk,k] = 1 is immediate. For ease of exposition, suppose that Y = Y B; the proof
is identical in the other two cases. To obtain (42), first note that E[Y Bk,j ] is the probability that j is not
the bottom of a descent in a randomly chosen Legendre-Stirling permutation of Mk. We can obtain such a
permutation by choosing a Legendre-Stirling permutation of Mk−1 in which j is not a descent, inserting k
anywhere except immediately to the left of j, and then inserting kk anywhere except immediately to the left
of j. Thus E[Y Bk,j ] = 3k−3

3k−2 ·
3k−2
3k−1 · E[Y Bk−1,j ], and (42) follows. 2

Lemma 5.3 allows us to compute E[Xk], which will be useful in our computation of V ar[Xk].
Proposition 5.4 For all k ≥ 1 we have

E[Xk] =
6k − 1

5
. (43)

Proof. The result is immediate for k = 1, so suppose k > 1; we argue by induction on k. Since expectation
is linear, by (41), Lemma 5.3, and induction we have

E[Xk] = 3k + 1−
k∑

j=1

(E[Y Bk,j ] + E[Y Lk,j ] + E[Y Rk,j ])

= 3k − 2− 3k − 3
3k − 1

k−1∑
j=1

(E[Y Bk−1,j ] + E[Y Lk−1,j ] + E[Y Rk−1,j ])

= 3k − 2− 3k − 3
3k − 1

(3k − 2− E[Xk−1])

=
6k − 1

5
,

as desired. 2

The variance V ar[Xk] also involves expected values of products of our indicator variables, so we now find
recurrence relations for these quantities.
Lemma 5.5 Fix k ≥ 2, let Y be one of Y B, Y L, and Y R, and let Z be one of Y B, Y L, and Y R. Then
we have

E[Yk,iZk,j ] =
(3k − 4)(3k − 3)
(3k − 2)(3k − 1)

E[Yk−1,iZk−1,j ], (1 ≤ i < j < k). (44)

Proof. This is similar to the proof of Lemma 5.3. 2

We now have enough information to compute V ar[Xk].
Proposition 5.6 For all k ≥ 1 we have

V ar[Xk] =
(k − 1)(108k + 99)

525k − 175
. (45)
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Proof. The result is immediate for k = 1, so suppose k > 1; we argue by induction on k. In view of (39)
and (43), it is sufficient to find E[X2

k ]. To do this, first use (41) and linearity of expectation to obtain

E[X2
k ] = E

(3k + 1)2 − 2(3k + 1)
k∑

j=1

(Y Bk,j + Y Lk,j + Y Rk,j) +

 k∑
j=1

(Y Bk,j + Y Lk,j + Y Rk,j)

2


= (3k + 1)2 − 2(3k + 1)E

 k∑
j=1

(Y Bk,j + Y Lk,j + Y Rk,j)

+ E


 k∑

j=1

(Y Bk,j + Y Lk,j + Y Rk,j)

2
 .

Now use (41) and (43) to eliminate the expected value in the middle term on the right side, obtaining

E[X2
k ] = −9k2 + 24k + 7

5
+ E


 k∑

j=1

(Y Bk,j + Y Lk,j + Y Rk,j)

2
 . (46)

To evaluate the last term on the right, first observe that k∑
j=1

(Y Bk,j + Y Lk,j + Y Rk,j)

2

= Q1(k) + 2Q2(k) +Q3(k), (47)

where

Q1(k) =
k∑

j=1

(
Y B2

k,j + Y L2
k,j + Y R2

k,j

)
,

Q2(k) =
k∑

i,j=1

(Y Bk,iY Lk,j + Y Lk,iY Rk,j + Y Rk,iY Bk,j) ,

and

Q3(k) =
k∑

i,j=1
i6=j

(Y Bk,iY Bk,j + Y Lk,iY Lk,j + Y Rk,iY Rk,j) .

Since Y Bk,j , Y Lk,j , and Y Rk,j are always equal to 0 or 1, by (41) and (43) we have

E[Q1(k)] = 3k + 1− 6k − 1
5

. (48)

Now observe that

Q2(k) = 2
k∑

i=1

(Y Bk,i + Y Lk,i + Y Rk,i)− 3 +
k−1∑
i,j=1

(Y Bk,iY Lk,j + Y Lk,iY Rk,j + Y Rk,iY Bk,j) ,

so by (41), (43), and Lemma 5.5 we have

E[Q2(k)] =
3
5

(6k − 1) +
(3k − 4)(3k − 3)
(3k − 2)(3k − 1)

E[Q2(k − 1)]. (49)

Similarly, we find that

E[Q3(k)] =
18
5

(k − 1) +
(3k − 4)(3k − 3)
(3k − 2)(3k − 1)

E[Q3(k − 1)]. (50)

Now combine (46), (47), (48), (49), and (50) to find that

E[X2
k ] = −9k2 − 39k + 25

5
+

(3k − 4)(3k − 3)
(3k − 2)(3k − 1)

E[2Q2(k − 1) +Q3(k − 1)]. (51)
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To obtain an expression for E[2Q2(k − 1) +Q3(k − 1)], first replace k with k − 1 in (46) and (47) to obtain

V ar[Xk−1] = E[X2
k−1]− E[Xk−1]2

= −1
5

(9k2 + 6k − 8) + E[Q1(k − 1)] + E[2Q2(k − 1) +Q3(k − 1)]− E[Xk−1]2.

Now replace k with k − 1 in (48) and (43) and use the results to eliminate E[Q1(k − 1)] and E[Xk−1]2,
respectively. Using induction to eliminate V ar[Xk−1] we find that

E[2Q2(k − 1) +Q3(k − 1)] =
3(3k − 2)(189k2 − 345k + 109)

525k − 700
.

Use this to eliminate E[2Q2(k − 1) +Q3(k − 1)] in (51), obtaining

E[X2
k ] =

106− 96k + 396k2 − 756k3

175− 525k
.

Now the result follows from (43) and (39). 2

Corollary 5.7 The sequence
{

Xk−E[Xk]√
V ar[Xk]

}∞
k=1

converges in distribution to the standard normal variable.

Proof. This is immediate from Theorem 5.2, Theorem 5.1 , and Proposition 5.6. 2
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