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Abstract

In [39] Terwilliger considered the C-algebra generated by a given Bose Mesner algebra
M and the associated dual Bose Mesner algebra M∗. This algebra is now known as
the Terwilliger algebra and is usually denoted by T . Terwilliger showed that each
vanishing intersection number and Krein parameter of M gives rise to a relation on
certain generators of T . These relations are often called the triple product relations.
They determine much of the structure of T , though not all of it in general. To illuminate
the role these relations play, the current author introduced in [29] a generalization T of
T . To go from T to T , we replace M and M∗ with a pair of dual character algebras C
and C∗. The dimensions of C and C∗ are equal; let d+1 denote this common dimension.
Intuitively, T is the associative C-algebra with identity generated by C and C∗ subject
to the analogues of Terwilliger’s triple product relations. T is infinite-dimensional
and noncommutative in general. In this paper we study T and its finite-dimensional
modules when d = 2 and T has no “extra” vanishing intersection numbers or dual
intersection numbers. In this case we show T is C-algebra isomorphic to M3(C) ⊕ A,
where M3(C) denotes the C-algebra consisting of all 3 by 3 matrices with entries in C
and A denotes the associative C-algebra with identity generated by the symbols e and
f subject to the relations e2 = e and f2 = f . We find a basis for A and we determine
the center of A. We classify the finite-dimensional indecomposable A-modules up to
isomorphism. There are four such A-modules in every odd dimension, and in every
even dimension these modules are parameterized by a single complex number. We also
classify the finite-dimensional irreducible A-modules up to isomorphism. Using our
results concerning A, we find a basis for T , we describe the center of T , and we classify
both the finite-dimensional indecomposable and the finite-dimensional irreducible T -
modules up to isomorphism.
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1 Introduction

There is an object in algebraic combinatorics known as a Bose Mesner algebra. There are several
equivalent definitions [9, 17, 33], but one that is particularly compact is the following [17, 33]. Let
n denote a positive integer, let Mn(C) denote the C-algebra of all n by n matrices with complex
entries, and let J ∈ Mn(C) denote the matrix whose entries are all 1. By a Bose Mesner algebra
of order n we mean a commutative subalgebra M of Mn(C) which contains J and which is closed
under transposition and entrywise multiplication. The vector space M together with entrywise
multiplication is a commutative C-algebra with identity J ; we refer to this algebra as M ′. To
avoid dealing directly with the entrywise product, it is convenient to consider a certain subalgebra
M∗ of Mn(C) which is isomorphic to M ′; this algebra is constructed as follows. For all X ∈ M ,
let ρ(X) denote the diagonal matrix in Mn(C) whose iith entry is equal to Xi1, for 1 ≤ i ≤ n.
For example, ρ(J) = I, the identity matrix in Mn(C). Observe the map ρ : M → Mn(C) is linear
and let M∗ denote the image of M under ρ. Since M is closed under entrywise multiplication and
contains J , we see M∗ is closed under ordinary matrix multiplication and contains I. Therefore
M∗ is a subalgebra of Mn(C), and one can show ρ : M ′ → M∗ is an isomorphism of C-algebras
[39]. The subalgebra T of Mn(C) generated by M and M∗ is known as the subconstituent algebra
or the Terwilliger algebra [39]. It has been used to study P - and Q-polynomial association schemes
[18, 39], group association schemes [8, 10], strongly regular graphs [42], Doob schemes [38], and
association schemes over the Galois rings of characteristic four [32]. Other work involving the
Terwilliger algebra can be found in [19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 40, 41].

In [29] the current author introduced a generalization T of T . The algebra T is defined by
generators and relations, and is infinite-dimensional and noncommutative in general. In this paper
we continue our study of T and its finite-dimensional modules. Before stating our results, we
describe T in more detail. To set the stage, we say a bit more about M , M∗, and T .

The algebras M and M∗ each have two bases of interest to us. To obtain one basis of M ,
observe M ′ is semisimple, since it contains no nonzero nilpotent elements [37, Theorem 3.9]. Since
M ′ is also commutative, it has a basis A0, . . . , Ad consisting of mutually orthogonal idempotents.
These matrices have all entries equal to zero or one and their sum is J . Moreover, for 0 ≤ i ≤ d
there exists a positive integer ki such that each row and column of Ai contains exactly ki ones;
this can be shown using the fact that Ai commutes with J . By definition of M we have I ∈ M
and it follows that I is one of A0, . . . , Ad; by convention we take A0 = I. We define E∗

i = ρ(Ai)
for 0 ≤ i ≤ d and we observe E∗

0 , . . . , E∗
d is a basis of mutually orthogonal idempotents of M∗.

To obtain the other basis of M , we show M is semisimple. Observe M is closed under complex
conjugation, since it has a basis A0, . . . , Ad whose entries are all real. By definition M is closed
under transposition, so it is closed under the conjugate transpose. Therefore M is semisimple [26,
p. 157]. Since M is also commutative, it has a basis E0, . . . , Ed consisting of mutually orthogonal
idempotents. The matrix n−1J is a rank one idempotent and so must be one of E0, . . . , Ed; by
convention we take E0 = n−1J . We define A∗

i = nρ(Ei) for 0 ≤ i ≤ d. Observe A∗
0, . . . , A

∗
d is a

basis for M∗ and A∗
0 = I.

The inspiration for T is a result of Terwilliger concerning certain triple products in T ; to
describe this result, we recall two sets of parameters. Since A0, . . . , Ad is a basis for M , there exist
scalars ph

ij such that

AiAj =
d∑

h=0

ph
ijAh (0 ≤ i, j ≤ d);
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these are known as the intersection numbers of M . Similarly, there exist scalars ph∗
ij such that

A∗
i A

∗
j =

d∑

h=0

ph∗
ij A∗

h (0 ≤ i, j ≤ d);

these are the known as the intersection numbers of M∗ and also as the Krein parameters of M .
Terwilliger showed in [39] that for 0 ≤ h, i, j ≤ d we have

E∗
hAiE

∗
j = 0 iff ph

ij = 0

and
EhA∗

i Ej = 0 iff ph∗
ij = 0.

We now describe the algebra T . Let C denote an associative C-algebra with a basis x0, . . . , xd

such that

xixj =
d∑

h=0

ph
ijxh (0 ≤ i, j ≤ d). (1)

Observe C is isomorphic to M ; in fact, the linear map from M to C which maps Ai to xi for
0 ≤ i ≤ d is an isomorphism of algebras. We write ei to denote the image of Ei under this map and
we observe e0, . . . , ed is a basis for C consisting of mutually orthogonal idempotents. Similarly, let
C∗ denote an associative C-algebra with a basis x∗

0, . . . , x
∗
d such that

x∗
i x

∗
j =

d∑

h=0

ph∗
ij x∗

h (0 ≤ i, j ≤ d). (2)

Then C∗ is isomorphic to M∗ and the linear map from M∗ to C∗ which maps A∗
i to x∗

i for 0 ≤ i ≤ d
is an isomorphism of algebras. We write e∗i to denote the image of E∗

i under this map and we observe
e∗0, . . . , e

∗
d is a basis for C∗ consisting of mutually orthogonal idempotents. We define T to be the

associative C-algebra with identity generated by x0, . . . , xd, x
∗
0, . . . , x

∗
d subject to the relations (1),

(2), x0 = x∗
0,

e∗hxie
∗
j = 0 if ph

ij = 0 (0 ≤ h, i, j ≤ d), (3)

and
ehx∗

i ej = 0 if ph∗
ij = 0 (0 ≤ h, i, j ≤ d). (4)

The element x0 = x∗
0 is the identity in T . Intuitively, T is the associative C-algebra with identity

generated by C and C∗ subject to the relations (3) and (4). We observe T is a homomorphic image
of T .

In our description above, the algebra T is constructed from a given Bose Mesner algebra.
However, in some sense we only needed the algebras C and C∗. These algebras are examples of
character algebras; see section 2 for a precise definition. In our main results we define T using
character algebras; we do not assume an underlying Bose Mesner algebra.

We now describe our main results. To do this, we assume d = 2 and T has no “extra” vanishing
intersection numbers or dual intersection numbers. (See section 3 for a precise definition.) We
show T is C-algebra isomorphic to M3(C)⊕A, where A is the associative C-algebra with identity
generated by symbols e and f subject to the relations e2 = e and f2 = f . We find a basis for A
and we describe the center of A. Recall a module for a C-algebra is said to be indecomposable
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whenever it is nonzero and is not a direct sum of two nonzero submodules. We classify the finite-
dimensional indecomposable A-modules up to isomorphism. There are four such A-modules in
every odd dimension, and in every even dimension these modules are parameterized by a single
complex number. We also classify the finite-dimensional irreducible A-modules up to isomorphism.
Using our results concerning A, we find a basis for T , we describe the center of T , we classify the
finite-dimensional indecomposable T -modules, and we classify the finite-dimensional irreducible
T -modules.

We remark that Tomiyama and Yamazaki [42] have studied T and its finite-dimensional modules
when d = 2. In contrast, our results involve T and its finite-dimensional modules when d = 2.

We conclude this section by setting some notation. We write C to denote the field of complex
numbers and R to denote the field of real numbers. From now on when we consider a matrix it
will be convenient to index the rows and columns starting with zero. So for the rest of this paper
we will regard matrices in Md+1(C) as having rows and columns indexed by 0, . . . , d. In this paper
we consider modules for several different C-algebras. Throughout, we consider only modules which
are finite-dimensional.

2 The Generalized Terwilliger Algebra

In this section we recall the definition of the generalized Terwilliger algebra T and some results
from [29] concerning T and its modules. We begin by recalling the notion of a character algebra,
which generalizes both the Bose Mesner algebra and the dual Bose Mesner algebra. For more
information on character algebras, see [5, 9, 13, 31, 34, 35, 36]. In [35, 36] a character algebra is
the same object as the double algebra of a finite abelian classlike hypergroup.

Definition 2.1 A character algebra C = < X0, . . . ,Xd > is a finite-dimensional associative C-
algebra together with a basis X0, . . . ,Xd having the following properties.

1. C is commutative.
2. X0 is the multiplicative identity element of C.
3. Let ph

ij (0 ≤ h, i, j ≤ d) denote complex numbers such that

XiXj =
d∑

h=0

ph
ijXh (0 ≤ i, j ≤ d). (5)

Then ph
ij ∈ R for 0 ≤ h, i, j ≤ d.

4. There exist an involution i 7→ i′ of 0, . . . , d and positive real numbers ki (0 ≤ i ≤ d) such
that

p0
ij = δji′ki. (0 ≤ i, j ≤ d)

5. The linear map τ : C → C which satisfies τ(Xi) = Xi′ for 0 ≤ i ≤ d is a C-algebra
isomorphism.

6. The linear map π0 : C → C which satisfies π0(Xi) = ki for 0 ≤ i ≤ d is a C-algebra
homomorphism.

We refer to the scalars ph
ij as the intersection numbers of C.

Remark A character algebra whose intersection numbers are all nonnegative is essentially the
same object as a table algebra. For more information on table algebras, see [1, 2, 3, 4, 6, 7, 11, 12,
14, 15, 16, 43, 44].

4



Let C = < X0, . . . ,Xd > denote a character algebra. We now recall the primitive idempotents
of C and the matrix of eigenvalues of C. To do this, it is convenient to set

N =
d∑

i=0

ki. (6)

We refer to N as the size of C. By [9, Proposition 5.4, p. 92] there exists a basis E0, . . . , Ed for
C such that

EiEj = δijEi (0 ≤ i, j ≤ d), (7)

X0 =
d∑

i=0

Ei, (8)

and

E0 = N−1
d∑

i=0

Xi.

This basis is unique up to a permutation of E1, . . . , Ed. We refer to the elements E0, . . . , Ed as
the primitive idempotents of C. Since X0, . . . ,Xd and E0, . . . , Ed are bases for C, there exists
a matrix P ∈ Md+1(C) such that

Xi =
d∑

r=0

PriEr (0 ≤ i ≤ d). (9)

We refer to P as the matrix of eigenvalues for C (with respect to the ordering E0, . . . , Ed).
We now recall what it means for two character algebras to be dual. Let C = < X0, . . . ,Xd >

and C∗ = < X∗
0 , . . . ,X∗

d > denote character algebras. Let E0, . . . , Ed denote an ordering of the
primitive idempotents of C and let E∗

0 , . . . , E∗
d denote an ordering of the primitive idempotents of

C∗. Let P denote the matrix of eigenvalues for C and let P ∗ denote the matrix of eigenvalues for
C∗. We say C and C∗ are dual (with respect to the given orderings of their primitive idempotents)
whenever

PP ∗ ∈ Span{I}.

When C and C∗ are dual, the size N of C is equal to the size N∗ of C∗ and

PP ∗ = NI. (10)

We now define the generalized Terwilliger algebra T .

Definition 2.2 Let C = < X0, . . . ,Xd > and C∗ = < X∗
0 , . . . ,X∗

d > denote character alge-
bras which are dual with respect to the orderings E0, . . . , Ed and E∗

0 , . . . , E∗
d of their primitive

idempotents. Let T denote the associative C-algebra with 1 which is generated by the symbols
x0, . . . , xd, x

∗
0, . . . , x

∗
d subject to the relations

(T1) x0 = x∗
0,

(T2) xixj =
d∑

h=0

ph
ijxh (0 ≤ i, j ≤ d),

(T2*) x∗
i x

∗
j =

d∑
h=0

ph∗
ij x∗

h (0 ≤ i, j ≤ d),
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(T3) e∗hxie
∗
j = 0 if ph

ij = 0 (0 ≤ h, i, j ≤ d),

(T3*) ehx∗
i ej = 0 if ph∗

ij = 0 (0 ≤ h, i, j ≤ d).

The ph
ij are the intersection numbers of C, as defined in (5), and the ph∗

ij are the intersection
numbers of C∗. The ei and e∗i are defined by

ei = N−1
d∑

j=0

P ∗
jixj (0 ≤ i ≤ d) (11)

and

e∗i = N−1
d∑

j=0

Pjix
∗
j (0 ≤ i ≤ d). (12)

Here N is as in (6), the matrix P is the matrix of eigenvalues of C defined in (9), and P ∗ is the
matrix of eigenvalues of C∗.

Let T be as in Definition 2.2. By [29, Proposition 5.1] the common element x0 = x∗
0 is the

multiplicative identity in T ; we denote this element by 1. By [29, Proposition 10.2] the elements
x0, . . . , xd form a basis for a subalgebra of T which is C-algebra isomorphic to C. By this and (8),

e0 + · · · + ed = 1. (13)

Similarly, by [29, Proposition 10.3] the elements x∗
0, . . . , x

∗
d form a basis for a subalgebra of T which

is C-algebra isomorphic to C∗. By this and (8),

e∗0 + · · · + e∗d = 1.

We now recall a certain central idempotent of T .

Definition 2.3 Let T be as in Definition 2.2. By [29, Proposition 11.1],

N

d∑

r=0

k−1
r e∗re0e

∗
r = N

d∑

j=0

k∗−1
j eje

∗
0ej . (14)

We write u0 to denote this element of T . By [29, Proposition 11.4] this element is a central
idempotent of T . In other words, u0 6= 0, u2

0 = u0, and u0t = tu0 for all t ∈ T . For notational
convenience we write u1 = 1 − u0. We observe that if u1 6= 0 then u1 is also a central idempotent
of T .

Since u0 is a central idempotent of T , the spaces T u0 and T u1 are two-sided ideals of T and

T = T u0 + T u1 (direct sum). (15)

By [29, Theorem 12.3] the two-sided ideal T u0 is C-algebra isomorphic to Md+1(C). As a result,
there exists an irreducible T -module V on which u1 vanishes and u0 acts as the identity. Moreover,
V is unique up to isomorphism of T -modules. We refer to V as the primary module. For more
information on T u0 and the primary module, see [29].

In the next section we begin an investigation of T u1 and its finite-dimensional modules. To
keep things simple, we will often assume the following condition holds.
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Definition 2.4 Let T be as in Definition 2.2. We say T has no extra vanishing intersection
numbers whenever

ph
ij 6= 0 (1 ≤ h, i, j ≤ d).

We say T has no extra vanishing dual intersection numbers whenever

ph∗
ij 6= 0 (1 ≤ h, i, j ≤ d).

3 The Algebra A
Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing intersection
numbers or dual intersection numbers. In this section we show that under these conditions T is
C-algebra isomorphic to M3(C) ⊕A, where A is defined as follows.

Definition 3.1 We write A to denote the associative C-algebra with 1 generated by symbols e and
f subject to the relations

(Ae) e2 = e,

(Af) f2 = f .

We begin with some relations involving u1.

Proposition 3.2 Let T be as in Definition 2.2 and suppose d = 2. Then

(i) e0u1 = 0,

(ii) e∗0u1 = 0,

(iii) e2u1 = u1 − e1u1,

(iv) e∗2u1 = u1 − e∗1u1.

Proof. (i) By [29, Corollary 11.3] we have e0u0 = e0. Therefore e0u1 = e0(1 − u0) = 0, as desired.
(ii) This is similar to the proof of (i).
(iii) Multiply (13) by u1, use (i) to simplify the result and solve for e2u1.
(iv) This is similar to the proof of (iii). 2

We now give a spanning set for T u1.

Proposition 3.3 Let T be as in Definition 2.2 and suppose d = 2. Then T u1 is spanned by

u1, e∗1u1, e1u1, e1e
∗
1u1, e∗1e1u1, e∗1e1e

∗
1u1, e1e

∗
1e1u1,

e1e
∗
1e1e

∗
1u1, e∗1e1e

∗
1e1u1, e∗1e1e

∗
1e1e

∗
1u1, e1e

∗
1e1e

∗
1e1u1, . . .

(16)

Proof. This is immediate from Proposition 3.2, since e0, e1, e2, e∗0, e
∗
1, e

∗
2 together generate T . 2

Later on we show the sequence in (16) is a basis for T u1, provided d = 2 and T has no extra
vanishing intersection numbers or dual intersection numbers. Our current goal, however, is to
show A and T u1 are C-algebra isomorphic in this case. To do this, we first obtain a C-algebra
homomorphism ϕ : A → T u1. We then display the inverse of ϕ. Specifically, we obtain a C-algebra
homomorphism φ : T → A and show the restriction of φ to T u1 is the inverse of ϕ.

We begin with ϕ.
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Proposition 3.4 Let T be as in Definition 2.2, suppose d = 2, and suppose u1 6= 0. There exists
a unique C-algebra homomorphism ϕ : A → T u1 such that

ϕ(e) = e1u1 (17)

and
ϕ(f) = e∗1u1. (18)

Moreover, ϕ is surjective.

Proof. Since u1 is a central idempotent and e1 and e∗1 are idempotents, the elements e1u1 and
e∗1u1 are also idempotents. Therefore there exists a unique C-algebra homomorphism ϕ : A → T u1

which satisfies (17) and (18). This map is surjective by Proposition 3.3, and since u1 is a central
idempotent. 2

We now obtain φ.

Proposition 3.5 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. Then there exists a unique C-algebra
homomorphism φ : T → A such that

(i) φ(xi) = P1ie + P2i(1 − e) (0 ≤ i ≤ 2),

(ii) φ(x∗
i ) = P ∗

1if + P ∗
2i(1 − f) (0 ≤ i ≤ 2).

Moreover,

(iii) φ(e0) = 0, φ(e1) = e, φ(e2) = 1 − e,

(iv) φ(e∗0) = 0, φ(e∗1) = f , φ(e∗2) = 1 − f ,

(v) φ(u0) = 0,

(vi) φ(u1) = 1,

and φ is surjective.

Proof. For notational convenience set

x̃i = P1ie + P2i(1 − e) (0 ≤ i ≤ 2) (19)

and
x̃∗

i = P ∗
1if + P ∗

2i(1 − f) (0 ≤ i ≤ 2).

Also for notational convenience set ẽ0 = 0, ẽ1 = e, and ẽ2 = 1 − e; observe

ẽiẽj = δij ẽi (0 ≤ i, j ≤ 2). (20)

Similarly, set ẽ∗0 = 0, ẽ∗1 = f , and ẽ∗2 = 1 − f and observe

ẽ∗i ẽ
∗
j = δij ẽ

∗
i (0 ≤ i, j ≤ 2).

Observe

x̃i =
2∑

j=0

Pjiẽj (0 ≤ i ≤ 2),
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so in view of (10) we have

ẽi = N−1
2∑

j=0

P ∗
jix̃j (0 ≤ i ≤ 2).

Similarly, we have

ẽ∗i = N−1
2∑

j=0

Pjix̃
∗
i (0 ≤ i ≤ 2).

To show there exists a C-algebra homomorphism φ : T → A which satisfies (i)–(iv), we show x̃i,
x̃∗

i , ẽi, and ẽ∗i satisfy the relations in (T1)–(T3*).
(T1) We show x̃0 = x̃∗

0. Setting i = 0 in (9) and comparing the result with (8) we find

Pr0 = 1 (0 ≤ r ≤ d). (21)

Setting i = 0 in (19) and using (21) to evaluate the result we find x̃0 = 1. Similarly, x̃∗
0 = 1, so

x̃0 = x̃∗
0.

(T2) We show

x̃ix̃j =
2∑

h=0

ph
ijx̃h (0 ≤ i, j ≤ 2). (22)

Fix i, j(0 ≤ i, j ≤ 2). By (19) and (20),

x̃ix̃j = P1iP1je + P2iP2j(1 − e). (23)

By [29, line (27)],

PriPrj =
d∑

h=0

ph
ijPrh (0 ≤ i, j, r ≤ d). (24)

Using (24) to evaluate the coefficients of e and 1 − e in (23) we obtain (22), as desired.
(T2*) This is similar to the proof that the relations in (T2) hold.
(T3) Fix h, i, j(0 ≤ h, i, j ≤ 2) such that ph

ij = 0. We show ẽ∗hx̃iẽ
∗
j = 0. Since T has no extra

vanishing intersection numbers, at least one of h, i, and j vanishes. First suppose h = 0 or j = 0.
Then ẽ∗hx̃iẽ

∗
j = 0 since ẽ∗0 = 0. Now suppose i = 0. Recall ph

0h = 1, and we assume ph
0j = 0, so we

must have h 6= j. Now

ẽ∗hx̃iẽ
∗
j = ẽ∗hẽ∗j (since x̃0 = 1)

= 0 (by (20)).

(T3*) This is similar to the proof that the relations in (T3) hold.
We have now shown x̃i, x̃∗

i , ẽi, and ẽ∗i satisfy the relations in (T1)–(T3*), so there exists a
C-algebra homomorphism φ : T → A which satisfies (i) and (ii). It is unique since xi, x∗

i generate
T . In the above construction we showed φ satisfies (iii) and (iv). To see φ satisfies (v), apply φ to
the left side of (14) and use (iii) to evaluate the result. Now (vi) is immediate, since u1 = 1 − u0.
The map φ is surjective by (iii) and (iv), since e and f together generate A. 2

We now show the restriction of φ to T u1 is the inverse of ϕ.
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Proposition 3.6 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. Then the map ϕ : A → T u1 of
Proposition 3.4 is a C-algebra isomorphism. The inverse of ϕ is the restriction of φ to T u1, where
φ is from Proposition 3.5.

Proof. It is routine using (17), (18), and Proposition 3.5 to verify ϕ(φ(eiu1)) = eiu1, ϕ(φ(e∗i u1)) =
e∗i u1 for 0 ≤ i ≤ 2, as well as φ(ϕ(e)) = e and φ(ϕ(f)) = f . Therefore, the restriction of φ to T u1

is the inverse of ϕ. It follows that ϕ is a C-algebra isomorphism. 2

Corollary 3.7 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing
intersection numbers or dual intersection numbers. Then T is C-algebra isomorphic to M3(C)⊕A.

Proof. Recall the C-algebra T u0 is isomorphic to M3(C). By Proposition 3.6 the C-algebra T u1

is isomorphic to A. Now the result follows from (15). 2

In view of Corollary 3.7, we now turn our attention to A and its modules. We resume our
study of T and its modules in sections 14–16.

4 A Basis for A
Let λ denote an indeterminant and let C[λ] denote the C-algebra consisting of all polynomials in
λ with coefficients in C. Let M2(C[λ]) denote the C-algebra of two by two matrices with entries
in C[λ]. In this section we describe a certain subalgebra A of M2(C[λ]) and we give a C-algebra
isomorphism from A to A. We conclude by characterizing those elements of M2(C[λ]) which are
also in A.

Definition 4.1 We write

E =
(

1 λ
0 0

)
(25)

and

F =
(

0 0
1 1

)
. (26)

We write A to denote the subalgebra of M2(C[λ]) generated by E and F .

It is immediate from (25) and (26) that E2 = E and F 2 = F . These facts lead us to the
following definition.

Definition 4.2 Let A be as in Definition 3.1. We write ω to denote the C-algebra homomorphism
from A to A which satisfies

ω(e) = E (27)

and
ω(f) = F. (28)

Shortly we will show ω is a C-algebra isomorphism. To do this, we use the following lemma.

Lemma 4.3 Let E and F be as in Definition 4.1. Then
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(i) (EF )n = λn

(
1 1
0 0

)
(n ≥ 1),

(ii) (FE)n = λn−1

(
0 0
1 λ

)
(n ≥ 1),

(iii) F (EF )n = (FE)nF = λnF (n ≥ 0),

(iv) E(FE)n = (EF )nE = λnE (n ≥ 0).

Proof. (i) Observe EF = λ

(
1 1
0 0

)
and

(
1 1
0 0

)2

=
(

1 1
0 0

)
.

(ii) Observe FE =
(

0 0
1 λ

)
and

(
0 0
1 λ

)2

= λ

(
0 0
1 λ

)
.

(iii) Combine (i) and F

(
1 1
0 0

)
= F .

(iv) Combine (ii) and E

(
0 0
1 λ

)
= λE. 2

For notational convenience we make the following definition.

Definition 4.4 We define ε00, ε01, ε10, ε11 ∈ M2(C[λ]) as follows.

ε00 =
(

1 0
0 0

)
ε01 =

(
0 1
0 0

)

ε10 =
(

0 0
1 0

)
ε11 =

(
0 0
0 1

)

Next we present a basis for M2(C[λ]) which will be useful in dealing with A.

Proposition 4.5 The sequence

ε01, ε00, I, F, E, EF, FE, FEF, EFE,

EFEF, FEFE, FEFEF, EFEFE, . . .
(29)

is a basis for the vector space M2(C[λ]).

Proof. The sequence

ε01, ε00, ε11, ε10, λε01, λε00, λε11, λε10,

λ2ε01, λ2ε00, λ2ε11, λ2ε10, . . .

is a basis for M2(C[λ]). With respect to this basis, the matrix representing (29) is upper triangular
with all diagonal entries equal to 1. Such a matrix is invertible, so (29) is a basis for M2(C[λ]). 2

The basis in (29) contains a basis for A.

Corollary 4.6 Let E, F and A be as in Definition 4.1. Then the matrices

I, F, E, EF, FE, FEF, EFE,EFEF, FEFE, FEFEF, EFEFE, . . . (30)

form a basis for A.
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Proof. Since E2 = E and F 2 = F , these elements span A. They are linearly independent by
Proposition 4.5. 2

We now show A and A are C-algebra isomorphic.

Corollary 4.7 The map ω : A → A of Definition 4.2 is a C-algebra isomorphism. Moreover, the
sequence

1, f, e, ef, fe, fef, efe, efef, fefe, fefef, efefe, . . . (31)

is a basis for A.

Proof. Recall e2 = 2 and f2 = f , so the elements in (31) span A. Now the result is immediate
from Corollary 4.6. 2

We conclude this section by characterizing the elements of M2(C[λ]) which are also in A.

Corollary 4.8 Suppose x ∈ M2(C[λ]) and let p1(λ), p2(λ), p3(λ), and p4(λ) denote elements of
C[λ] such that

x =
(

p1(λ) p2(λ)
p3(λ) p4(λ)

)
.

Then the following are equivalent.

(i) x ∈ A.

(ii) p2(0) = 0 and p1(1) − p2(1) + p3(1) − p4(1) = 0.

Proof. (i) ⇒ (ii) Use Lemma 4.3 to see (ii) holds for the elements in (30). By Corollary 4.6, line
(ii) holds for all x ∈ A.

(ii) ⇒ (i) By Proposition 4.5 and Corollary 4.6 there exist a, b ∈ C and y ∈ A such that

x − y = aε00 + bε01.

The elements x and y both satisfy (ii), so their difference does as well. Therefore a = b = 0 and
x ∈ A, as desired. 2

5 The Center of A
Recall an element of a C-algebra is called central whenever it commutes with all elements of that
algebra. The center of a C-algebra is the subalgebra consisting of all central elements of that
algebra. In this section we show the center of A is C-algebra isomorphic to C[λ], from which it
follows that the center of A is C-algebra isomorphic to C[λ]. We begin with an element of the
center of A.

Proposition 5.1 Let E, F , and A be as in Definition 4.1. Then

EF + FE − E − F + I = λI. (32)

Moreover, λI is central in A.
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Proof. Line (32) is immediate from (25) and (26). The last assertion is clear. 2

We now describe the center of A.

Proposition 5.2 Let A be as in Definition 4.1. Then the following hold.

(i) The center of A is the subalgebra of A generated by λI.

(ii) The center of A is C-algebra isomorphic to C[λ].

Proof. (i) Clearly the subalgebra of A generated by λI is in the center of A. To show the reverse
inclusion, let x denote an element of the center of A. The 10-entry of x is equal to the 10-entry of
xE −Ex and is therefore 0. The 01-entry of x is equal to the 01-entry of xF −Fx and is therefore
0. The 11-entry of x minus the 00-entry of x is equal to the 10-entry of xF − Fx and is therefore
0. It follows that x = p(λ)I for some p(λ) ∈ C[λ].

(ii) This is immediate from (i). 2

In view of Corollary 4.7 and Proposition 5.1, we make the following definition.

Definition 5.3 Let A be as in Definition 3.1. We write ξ to denote the element of A which
satisfies

ξ = ef + fe − e − f + 1. (33)

We conclude this section by describing the center of A.

Proposition 5.4 Let A be as in Definition 3.1. Then the following hold.

(i) The center of A is the subalgebra of A generated by ξ.

(ii) The center of A is C-algebra isomorphic to C[λ].

Proof. Apply ω to (33) and use (27), (28), and (32) to obtain ω(ξ) = λI. Now (i) and (ii) follow
from Corollary 4.7 and Proposition 5.2. 2

6 A Presentation of A
In Definition 3.1 we gave a presentation of A. In this section we give a second presentation of A
which will be useful when we consider A-modules.

Definition 6.1 We write Ã to denote the associative C-algebra with 1 generated by b and p subject
to the following relations.

(A1) pb = −bp.

(A2) b2 + p2 = 1.

We first present a C-algebra isomorphism from A and Ã.
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Proposition 6.2 Let A be as in Definition 3.1. There exists a C-algebra isomorphism σ : Ã → A
such that

σ(b) = e + f − 1 (34)

and
σ(p) = e − f. (35)

Moreover,

σ−1(e) =
b + p + 1

2
and

σ−1(f) =
b − p + 1

2
.

Proof. Using (Ae) and (Af) we find

(e − f)(e + f − 1) = −(e + f − 1)(e − f)

and
(e + f − 1)2 + (e − f)2 = 1.

Therefore there exists a C-algebra homomorphism σ : Ã → A which satisfies (34) and (35).
To show σ is an isomorphism we display its inverse. Using (A1) and (A2) we find

(b + p + 1)2

4
=

b + p + 1
2

and
(b − p + 1)2

4
=

b − p + 1
2

.

Therefore there exists a C-algebra homomorphism ς : A → Ã such that

ς(e) =
b + p + 1

2

and
ς(f) =

b − p + 1
2

.

We routinely check ς(σ(b)) = b, ς(σ(p)) = p, σ(ς(e)) = e, and σ(ς(f)) = f , so ς is the inverse of σ.
Therefore σ is an C-algebra isomorphism, as desired. 2

In view of Proposition 6.2, we make the following definition.

Definition 6.3 Let A be as in Definition 3.1 and let Ã be as in Definition 6.1. For the rest of
this paper we identify A and Ã via σ, so that

b = e + f − 1, (36)

p = e − f, (37)

e =
b + p + 1

2
, (38)

and
f =

b − p + 1
2

. (39)
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We now present some useful relationships among e, f , b, and p.

Proposition 6.4 With reference to Definition 6.3,

(i) be = fb,

(ii) bf = eb,

(iii) pe = (1 − f)p,

(iv) pf = (1 − e)p.

Proof. (i) Use (36) to eliminate b in be and fb and use (Ae) and (Af) to evaluate the results.
(ii) This is similar to the proof of (i).
(iii) Use (37) to eliminate p in pe and p − fp and use (Ae) and (Af) to evaluate the results.
(iv) This is similar to the proof of (iii). 2

Next we express ξ in terms of b and in terms of p.

Proposition 6.5 Let ξ be as in Definition 5.3. We have

ξ = b2

and
1 − ξ = p2.

Proof. These are routine using (36), (37), (Ae), and (Af). 2

We conclude this section by giving a basis for A in terms of b, p, and ξ.

Proposition 6.6 Let A be as in Definition 3.1 and let ξ be as in Definition 5.3. The sequence

1, b, p, bp, ξ, bξ, pξ, bpξ, ξ2, bξ2, pξ2, bpξ2, . . . (40)

is a basis for A.

Proof. By Corollary 4.6 the sequence in (31) is a basis for A. Therefore the sequence

1, e + f, e − f, fe − ef, fe + ef, efe + fef,

efe − fef, fefe − efef, fefe + efef, . . .

is a basis for A. With respect to this basis, the matrix representing the sequence in (40) is upper
triangular with all diagonal entries equal to 1. Such a matrix is invertible, so the sequence in (40)
is a basis for A. 2
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7 Linear Algebra Review: Jordan Decompositions

Our main result concerning A-modules is Theorem 12.1, which is a classification of the finite-
dimensional indecomposable A-modules. Our proof of this result uses some facts concerning linear
transformations, which we summarize in this section. We begin by setting some notation.

Throughout this section, let V denote a finite-dimensional vector space over C and let θ : V → V
denote a linear transformation.

We now recall the notion of a generalized eigenspace of θ.

Definition 7.1 Let c denote an eigenvalue for θ. By the generalized eigenspace of θ with
eigenvalue c, we mean the subspace

{v ∈ V | (θ − c1)iv = 0 for some i ∈ Z≥0}.

Proposition 7.2 Let c1, . . . , cn denote the distinct eigenvalues of θ and let V1, . . . , Vn denote the
associated generalized eigenspaces. Then

V =
n∑

i=1

Vi (direct sum).

We now recall the Jordan decomposition of V with respect to θ.

Definition 7.3 We say a subspace W ⊆ V is an elementary Jordan block for θ whenever the
following hold.

1. W 6= 0.

2. θW ⊆ W .

3. The minimal polynomial of the restriction of θ to W has the form (x − c)n for some c ∈ C,
where n = dimW .

4. There does not exist a subspace W ′ of V satisfying 1–3 such that W ⊆ W ′ and W 6= W ′.

When 1–4 hold, we observe W is contained in the generalized eigenspace of θ with eigenvalue c.

Proposition 7.4 Let W denote an elementary Jordan block for θ and let c denote the associated
eigenvalue. Then there exists a basis v1, . . . , vn of W such that (θ− cI)vi = vi+1 for 1 ≤ i < n and
(θ − cI)vn = 0.

Definition 7.5 By a Jordan decomposition of V (with respect to θ) we mean a sequence of
subspaces V1, . . . , Vn of V such that the following hold.

1. Vi is an elementary Jordan block of V with respect to θ for 1 ≤ i ≤ n.

2. V =
n∑

i=1
Vi and the sum is direct.

Proposition 7.6 There exists a Jordan decomposition of V with respect to θ.

Proposition 7.7 The number of elementary Jordan blocks in a given Jordan decomposition of V
with respect to θ is independent of the decomposition.
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Proposition 7.8 Let V1, . . . , Vn denote a sequence of subspaces of V . Then V1, . . . , Vn is a Jordan
decomposition of V with respect to θ if and only if the following hold.

(i) Vi satisfies conditions 1–3 of Definition 7.3 for 1 ≤ i ≤ n.

(ii) V =
n∑

i=1
Vi and the sum is direct.

8 The Type of an Indecomposable A-Module

Recall a module for a C-algebra is said to be indecomposable whenever it is nonzero and is
not a direct sum of two nonzero submodules. In this section we introduce a parameter of an
indecomposable A-module; we call this parameter the type of the module. We begin with an
element of the center of A.

Definition 8.1 Let b, p ∈ A be as in Definition 6.3. We write

ζ = b2 − p2.

Proposition 8.2 The element ζ is central in A. Moreover,

ζ = 2b2 − 1 (41)

and
ζ = 1 − 2p2. (42)

Proof. The first assertion is immediate from Propositions 6.5 and 5.4(i). Lines (41) and (42) are
immediate from (A2). 2

The characteristic polynomial of ζ on an indecomposable A-module has a simple form.

Proposition 8.3 Let V denote an indecomposable A-module and set n = dimV . Then the char-
acteristic polynomial of ζ on V has the form (x − c)n for some c ∈ C.

Proof. Let V1, . . . , Vk denote the nonzero generalized eigenspaces of ζ. By Proposition 7.2,

V =
k∑

i=1

Vi (direct sum).

Since ζ is central in A, the space Vi is a submodule of V for 1 ≤ i ≤ k. But V is indecomposable,
so we must have k = 1. The result follows. 2

In view of Proposition 8.3, we make the following definition.

Definition 8.4 Let V denote an indecomposable A-module. We refer to the scalar c of Proposition
8.3 as the type of V .

Let c denote the type of an indecomposable A-module. Certain scalars associated with c will
be useful in describing V . To simplify notation, we make the following convention.
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Definition 8.5 For all c ∈ C fix square roots

c+ =

√
1 + c

2
(43)

and

c− =

√
1 − c

2
.

We observe c+ = 0 if and only if c = −1. Similarly, c− = 0 if and only if c = 1. Moreover,

c2
+ + c2

− = 1

and
c2
+ − c2

− = c.

Next we consider the actions of b and p on an indecomposable A-module.

Proposition 8.6 Let V denote an indecomposable A-module. With reference to Definition 8.5,
the following are equivalent for all c ∈ C.

(i) The type of V is equal to c.

(ii) The eigenvalues of b on V are contained in {c+,−c+}.

(iii) The eigenvalues of p on V are contained in {c−,−c−}.

Proof. (i) ⇒ (ii) Let α denote an eigenvalue of b on V . Observe 2b2 − 1 = ζ by (41) so 2α2 − 1 is
an eigenvalue of ζ. Now 2α2 − 1 = c by Proposition 8.3 so α = c+ or α = −c+.

(ii) ⇒ (i) Let α denote the eigenvalue of ζ on V . By (41) we see α+1
2 is an eigenvalue for b2

on V . We now see α+1
2 = c2

+ and it follows from (43) that α = c. Therefore c is the type of V by
Proposition 8.3 and Definition 8.4.

(i) ⇐⇒ (iii) This is similar to the proof of (i) ⇐⇒ (ii). 2

Corollary 8.7 Let V denote an indecomposable A-module of type c.

(i) If c = 1 then p is nilpotent on V . If c 6= 1 then p is invertible on V .

(ii) If c = −1 then b is nilpotent on V . If c 6= −1 then b is invertible on V .

Proof. These are immediate from Proposition 8.6. 2

In view of Proposition 8.6 we make the following definition.

Definition 8.8 Let V denote an indecomposable A-module of type c. When c 6= −1 we write V +

(resp. V −) to denote the generalized eigenspace of b with eigenvalue c+ (resp. −c+). We observe

V = V + + V − (direct sum). (44)

When c 6= 1 we write V+ (resp. V−) to denote the generalized eigenspace of p with eigenvalue c−
(resp. −c−). We observe

V = V+ + V− (direct sum).
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We conclude this section by considering the actions of b and p on V +, V −, V+, and, V−.

Proposition 8.9 Let V denote an indecomposable A-module of type c. If c 6= −1 then

pV + ⊆ V −, pV − ⊆ V +. (45)

If c 6= 1 then
bV+ ⊆ V−, bV− ⊆ V+.

Proof. To obtain the inclusion on the left in (45), first fix v ∈ V + and i ∈ Z such that (b−c+1)iv =
0. Then observe

(b + c+1)ipv = (−1)ip(b − c+1)iv (by (A1))

= 0,

so pv ∈ V −. We have now shown the inclusion on the left in (45) holds. The remaining assertions
are obtained similarly. 2

9 The Indecomposable A-Modules of Type not ±1

The structure of an indecomposable A-module of type 1 or −1 is fundamentally different from that
of other indecomposable A-modules, so we will study indecomposable A-modules on a case by case
basis. In this section we classify the indecomposable A-modules with type not equal to 1 or −1 up
to isomorphism. We begin by refining Proposition 8.9 for these modules.

Proposition 9.1 Let V denote an indecomposable A-module with type not equal to 1 or −1. The
following hold.

(i) The maps
V + → V − V − → V +

v 7→ pv v 7→ pv

are isomorphisms of vector spaces.

(ii) The maps
V+ → V− V− → V+

v 7→ bv v 7→ bv

are isomorphisms of vector spaces.

Proof. This is immediate from Proposition 8.9 and Corollary 8.7. 2

Proposition 9.1 leads to the following result concerning the dimension of V .

Corollary 9.2 Let V denote an indecomposable A-module with type not equal to 1 or −1 and set
n = dimV . Then n is even and V +, V −, V+, and V− all have dimension n

2 .

Proof. The spaces V + and V − have the same dimension by Proposition 9.1(i), so dimV + =
dimV − = n

2 by (44). The case involving V+ and V− is similar. 2

Suppose V is an indecomposable A-module with type not equal to 1 or −1. Next we consider
Jordan decompositions of V +, V −, V+, and V−.
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Proposition 9.3 Let V denote an indecomposable A-module with type not equal to 1 or −1. Then
the following hold.

(i) V + and V − are elementary Jordan blocks for b.

(ii) V+ and V− are elementary Jordan blocks for p.

Proof. (i) Let V1, . . . , Vm denote a Jordan decomposition of V + with respect to b. Combining
(A1) with Proposition 9.1(i) we find pV1, . . . , pVm is a Jordan decomposition of V − with respect
to b. Combining this with (44) we find

V =
m∑

i=1

(Vi + pVi) (direct sum). (46)

Now fix i, 1 ≤ i ≤ m; we show Vi + pVi is an A-submodule of V . To do this, first observe bVi ⊆ Vi.
Combining this with (A1) we find bpVi ⊆ pVi, so Vi + pVi is closed under b. Recall p2 = 1 − b2,
so p2Vi ⊆ Vi. Therefore Vi + pVi is closed under p. The elements b and p together generate A, so
Vi + pVi is an A-submodule of V , as claimed. Since V is indecomposable, we must have m = 1 in
(46). We conclude V + and V − are elementary Jordan blocks for b.

(ii) This is similar to the proof of (i). 2

We now classify the indecomposable A-modules with type not equal to 1 or −1.

Proposition 9.4 Fix c ∈ C such that c 6= −1 and c 6= 1 and fix m ∈ Z>0. Then there exists an
A-module V such that

(i) V is indecomposable,

(ii) dimV = 2m,

(iii) the type of V is equal to c.

Moreover, V is unique up to isomorphism of A-modules. In addition, there exists a basis v1, . . . , vm,
w1, . . . , wm of V such that

bvi = c+vi + vi+1 (1 ≤ i ≤ m) , (47)

bwi = −c+wi + wi+1 (1 ≤ i ≤ m) , (48)

pvi = (−1)i ((1 − c+)wi + wi+1) (1 ≤ i ≤ m) , (49)

pwi = (−1)i ((1 + c+) vi + vi+1) (1 ≤ i ≤ m) , (50)

where c+ and c− are as in Definition 8.5 and vm+1 = wm+1 = 0.

Proof. First let V denote an A-module which satisfies (i)–(iii). We show V has a basis v1, . . . , vm,
w1, . . . , wm which satisfies (47)–(50).

Recall V + is an elementary Jordan block for b and observe dimV + = m by Corollary 9.2. By
Proposition 7.4 there exists a basis v1, . . . , vm of V + which satisfies (47). We now construct a
basis w1, . . . , wm of V − which satisfies (49). We do this recursively, starting with wm. By the left
part of (45) and since c+ 6= 1, there exists wm ∈ V − such that (49) holds for i = m. Similarly,
given j, 1 ≤ j ≤ m − 1, and given wj+1, . . . , wm, there exists wj ∈ V − which satisfies (49) with

20



i = j. By their construction, w1, . . . , wm satisfy (49). Moreover, they span the image pV + = V −,
so w1, . . . , wm is a basis for V −. From (44) we find v1, . . . , vm, w1, . . . , wn is a basis for V .

To show (48) holds we argue by induction, starting with the case i = m. To begin, set i = m
in (49) and apply b to the result. Use (A1), (47), and (49) to evaluate the left side. Solve the
resulting equation for bwm to obtain (48) with i = m. Now fix j, 1 ≤ j ≤ m− 1, and suppose (48)
holds for i = j + 1; we show it holds for i = j. To do this, set i = j in (49) and apply b to the
result. Use (A1), (47), and (49) to evaluate the left side. Use induction to evaluate the right side.
Solve the resulting equation for bwj to obtain (48) with i = j. We have now shown (48) holds.
The proof of (50) is similar.

We have now shown every A-module which satisfies (i)–(iii) has a basis which satisfies (47)–
(50). Therefore if such an A-module exists then it is unique up to isomorphism of A-modules.
Next we show there exists an A-module which satisfies (i)–(iii).

Let V denote a vector space over C of dimension 2m and let v1, . . . , vm, w1, . . . , wm denote a
basis for V . Let b : V → V and p : V → V denote linear transformations which satisfy (47)–(50).
It is routine to verify bp = −pb and b2 + p2 = 1. Therefore b and p induce an A-module structure
on V . We show the A-module V satisfies (i)–(iii).

(i) To show V is indecomposable, we show every nonzero A-submodule of V contains vm. To
do this, we first observe by (47) and (48) that Span{v1, . . . , vm} is an elementary Jordan block for
b with eigenvalue c+ and Span{w1, . . . , wm} is an elementary Jordan block for b with eigenvalue
−c+. Therefore c+ and −c+ are the only eigenvalues of b on V . Moreover, vm and wm are (up to
scalar multiplication) the unique eigenvectors for b in V with eigenvalues c+ and −c+ respectively.
Now let W denote a nonzero submodule of V . Since C is algebraically closed and W 6= 0, there
exists a nonzero eigenvector for b contained in W . Let v denote such a vector and observe the
associated eigenvalue is either c+ or −c+. Suppose the associated eigenvalue is c+. Then v is a
nonzero scalar multiple of vm, so vm ∈ W . Suppose the associated eigenvalue is −c+. Then v is a
nonzero scalar multiple of wm, so wm ∈ W . Setting i = m in (50) and recalling c+ 6= −1, we find
vm ∈ W . In either case vm ∈ W , as desired.

Now let W1 and W2 denote nonzero submodules of V . Observe vm ∈ W1 ∩ W2, so the sum
W1 + W2 is not direct. Therefore V is indecomposable.

(ii) This is immediate from the definition of V .
(iii) This is immediate from Proposition 8.6, since c+ and −c+ are the only eigenvalues of b on

V . 2

In view of Proposition 9.4, we make the following definition.

Definition 9.5 For all c ∈ C such that c 6= −1 and c 6= 1 and all n ∈ Z>0 such that n is even we
write Vc,n to denote the unique A-module which satisfies (i)–(iii) of Proposition 9.4 with n = 2m.

Summarizing our results so far in this section, we have the following.

Proposition 9.6 Let V denote an A-module. For every c ∈ C such that c 6= −1 and c 6= 1, and
for every n ∈ Z>0, the following are equivalent.

(i) n is even and V is A-module isomorphic to Vc,n.

(ii) V is indecomposable of type c and dimension n.

For the sake of completeness we record the following, which is clear from the proof of Proposition
9.4.
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Proposition 9.7 Fix c ∈ C such that c 6= −1 and c 6= 1, fix m ∈ Z>0, and set V = Vc,2m. Let
v1, . . . , vm, w1, . . . , wm denote a basis for V which satisfies (47)–(50). Then

V + = Span{v1, . . . , vm}

and
V − = Span{w1, . . . , wm}.

We now describe the actions of e, f , and ξ on the basis v1, . . . , vm, w1, . . . , wm of Proposition
9.4.

Proposition 9.8 Fix c ∈ C such that c 6= −1 and c 6= 1 and fix m ∈ Z>0. Let v1, . . . , vm,
w1, . . . , wm denote a basis for Vc,2m which satisfies (47)–(50). Then for 1 ≤ i ≤ m we have

2evi = (1 + c+)vi + vi+1 + (−1)i ((1 − c+)wi + wi+1) , (51)

2ewi = (−1)i ((1 + c+)vi + vi+1) + (1 − c+)wi + wi+1, (52)

2fvi = (1 + c+)vi + vi+1 + (−1)i+1 ((1 − c+)wi + wi+1) , (53)

2fwi = (−1)i+1 ((1 + c+)vi + vi+1) + (1 − c+)wi + wi+1, (54)

ξvi = c2
+vi + 2c+vi+1 + vi+2, (55)

and
ξwi = c2

+wi − 2c+wi+1 + wi+2. (56)

Here vj = wj = 0 for all j > m, the element ξ is from (33), and c+ is from (43).

Proof. To obtain (51), apply (38) to vi and use (47) and (49) to evaluate the result. To obtain
(52), apply (38) to wi and use (48) and (50) to evaluate the result. To obtain (53), apply (39) to
vi and use (47) and (49) to evaluate the result. To obtain (54), apply (39) to wi and use (48) and
(50) to evaluate the result. To obtain (55), apply ξ = b2 to vi and use (47) to evaluate the result.
To obtain (56), apply ξ = b2 to wi and use (48) to evaluate the result. 2

10 The Indecomposable A-Modules of Type −1

In this section we classify the indecomposable A-modules of type −1 up to isomorphism. We begin
by considering a Jordan decomposition of such an A-module with respect to b.

Proposition 10.1 Let V denote an indecomposable A-module of type −1. Then V is an elemen-
tary Jordan block for b.

Proof. Let n denote the number of elementary Jordan blocks in any Jordan decomposition of
V with respect to b. We show n = 1. To do this, we show there exists a Jordan decomposition
V1, . . . , Vn of V with respect to b such that each of V1, . . . , Vn is an A-submodule of V .

Let V1, . . . , Vn denote a Jordan decomposition of V with respect to b such that the number of
spaces among V1, . . . , Vn which are A-submodules of V is maximal. We show each of V1, . . . , Vn is
an A-submodule of V .

Suppose by way of contradiction at least one of V1, . . . , Vn is not an A-submodule of V . Re-
ordering V1, . . . , Vn if necessary, we may assume V1 is not an A-submodule of V . We now construct
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an A-submodule V ′
1 of V such that V ′

1 , V2, . . . , Vn is a Jordan decomposition of V with respect to
b.

Observe b is nilpotent on V by Corollary 8.7. Since V1 is an elementary Jordan block for b, the
space V1 has a basis v, bv, . . . , bm−1v, where m = dimV1. The vector bm−1v is a nonzero element of
V1, so it is not in V2 + · · ·+Vn. Observe bm−1ev + bm−1(1− e)v = bm−1v, so at least one of bm−1ev
and bm−1(1 − e)v is not in V2 + · · · + Vn. In other words, there exists w ∈ {ev, (1 − e)v} such that

bm−1w 6∈ V2 + · · · + Vn. (57)

Set
V ′

1 = Span{w, bw, . . . , bm−1w}. (58)

We show V ′
1 is an A-submodule of V and V ′

1 , V2, . . . , Vn is a Jordan decomposition of V with respect
to b.

To see V ′
1 is an A-submodule of V , we show V ′

1 is closed under b and p. To see V ′
1 is closed

under b, we combine bmv = 0 with Proposition 6.4(i),(ii) to obtain

bmw = 0. (59)

Combining this with (58) we find V ′
1 is closed under b. To see V ′

1 is closed under p, first recall w
is one of ev and (1 − e)v. Using (38) we find pw = w − bw in the first case and pw = −w − bw in
the second. Also recall pb = −bp, so pbiw = (−1)ibipw for 0 ≤ i ≤ m. From these facts we see V ′

1

is closed under p. Since b and p together generate A, the space V ′
1 is an A-submodule of V .

We now show V ′
1 , V2, . . . , Vn is a Jordan decomposition of V with respect to b. To do this

we apply Proposition 7.8. Using (57) and (59) we routinely find w, bw, . . . , bm−1w are linearly
independent and V ′

1∩(V2+· · ·+Vn) = 0. Apparently dimV ′
1 = m = dimV1, and V1+V2+· · ·+Vn =

V , so V ′
1 + V2 + · · · + Vn = V . Using these facts, we find conditions (i) and (ii) of Proposition 7.8

hold for V ′
1 , V2, . . . , Vn. Therefore V ′

1 , V2, . . . , Vn is a Jordan decomposition of V with respect to b.
We have now shown there exists an A-submodule V ′

1 of V such that V ′
1 , V2, . . . , Vn is a Jordan

decomposition of V with respect to b, contradicting our selection of V1, . . . , Vn. Therefore all of
the spaces V1, . . . , Vn are A-submodules of V . Since V is indecomposable, we must have n = 1.
Therefore V is an elementary Jordan block for b, as desired. 2

Next we consider the action of p on the kernel of b.

Proposition 10.2 Let V denote an indecomposable A-module of type −1. The kernel of b on V
is one-dimensional and is spanned by an eigenvector for p. The associated eigenvalue is 1 or −1.

Proof. The fact that the kernel of b on V is one-dimensional is immediate from Proposition 10.1.
To see it is spanned by an eigenvector for p, fix a nonzero v in the kernel of b. Use (A1) to obtain
bpv = −pbv = 0 and conclude pv is also in the kernel of b. Since this space is one-dimensional, v
must be an eigenvector for p. By Proposition 8.6 the associated eigenvalue is equal to 1 or −1. 2

We now consider the case of Proposition 10.2 in which the eigenvalue of p on the kernel of b is
equal to 1.

Proposition 10.3 Fix n ∈ Z>0. There exists an A-module V such that

(i) V is indecomposable,

(ii) dimV = n,
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(iii) the type of V is −1,

(iv) there exists a nonzero v ∈ V such that bv = 0 and pv = v.

Moreover, V is unique up to isomorphism of A-modules. In addition, there exists a basis v1, . . . , vn

of V such that
bvi = vi+1 (1 ≤ i ≤ n) (60)

and
pvi = (−1)n−i(vi + vi+1) (1 ≤ i ≤ n), (61)

where vn+1 = 0.

Proof. First let V denote an A-module which satisfies (i)–(iv). We show V has a basis which
satisfies (60) and (61).

To begin, observe b is nilpotent on V by (iii) and Corollary 8.7, so bnV = 0. Set

g =

{
e if n is even;
f if n is odd.

We claim bn−1gV = 0. To show this, recall by Proposition 10.1 that V is an elementary Jordan
block for b. Therefore bn−1V is the kernel of b on V , and this kernel is one-dimensional. Combining
this with (iv), we find (1 − p)bn−1V = 0. When n is even we have

bn−1gV = bn−1eV

= bn−1(b + p + 1)V (by (38))

= bn−1(p + 1)V (since bnV = 0)

= (1 − p)bn−1V (by (A1))

= 0.

The proof that bn−1gV = 0 for n odd is similar.
We now construct a basis for V which satisfies (60) and (61). Since bn−1V 6= 0 and bn−1gV = 0,

there exists v ∈ (1 − g)V such that bn−1v 6= 0. Set vi = bi−1v for 1 ≤ i ≤ n and observe bnv = 0.
Using this fact we routinely find v1, . . . , vn are linearly independent. Since dimV = n, we see
v1, . . . , vn is a basis for V . By construction v1, . . . , vn satisfy (60). We now show v1, . . . , vn satisfy
(61). Recall v ∈ (1 − g)V and g2 = g, so gv = 0. Combining this with (38) (if n is even) or (39)
(if n is odd) we find pv = (−1)n+1(v + bv). Combining this with (A1), we find v1, . . . , vn satisfies
(61).

We have shown every A-module satisfying (i)–(iv) has a basis which satisfies (60) and (61).
Therefore such an A-module is unique if it exists. We now show there exists an A-module which
satisfies (i)–(iv).

Let V denote a vector space over C of dimension n and let v1, . . . , vn denote a basis for V .
Let b and p denote linear transformations of V which satisfy (60) and (61). It is routine to verify
bp = −pb and b2 + p2 = 1. Therefore b and p induce an A-module structure on V such that (60)
and (61) hold. We show this A-module V satisfies (i)–(iv).

(i) Let K denote the kernel of b on V . To show V is indecomposable, we show K 6= 0 and that
K is contained in every nonzero submodule of V . By (60) the space K has basis vn, so dimK = 1.
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Let W denote a nonzero A-submodule of V . Of course b ∈ A, so bW ⊆ W . By (60) the element b
is nilpotent on V , so b is nilpotent on W . Therefore K ∩ W 6= 0. Now K ⊆ W since dimK = 1.

(ii) This is immediate from the construction of V .
(iii) This is immediate from (i) and Corollary 8.7(ii), since b is nilpotent on V .
(iv) Set i = n in (60) and (61) to obtain bvn = 0 and pvn = vn. 2

In view of Proposition 10.3, we make the following definition.

Definition 10.4 For all n ∈ Z>0 we write V+
−1,n to denote the unique A-module which satisfies

(i)–(iv) of Proposition 10.3.

We conclude our study of V+
−1,n by describing the actions of e, f , and ξ on the basis v1, . . . , vn

of Proposition 10.3.

Proposition 10.5 Fix n ∈ Z>0 and let v1, . . . , vn denote a basis for V+
−1,n which satisfies (60) and

(61). Then for 1 ≤ i ≤ n,

evi =

{
0 if n − i is odd;
vi + vi+1 if n − i is even;

(62)

fvi =

{
vi + vi+1 if n − i is odd;
0 if n − i is even;

(63)

ξvi = vi+2. (64)

Here vj = 0 for all j > n and ξ is from (33).

Proof. To obtain (62), apply (38) to vi and use (60) and (61) to evaluate the result. To obtain
(63), apply (39) to vi and use (60) and (61) to evaluate the result. To obtain (64), apply ξ = b2 to
vi and use (60) to evaluate the result. 2

We now turn our attention to the case of Proposition 10.2 in which the eigenvalue of p on the
kernel of b is equal to −1. Reversing the roles of p and −p in Proposition 10.3, we obtain the
following result.

Proposition 10.6 Fix n ∈ Z>0. There exists an A-module V such that

(i) V is indecomposable,

(ii) dimV = n,

(iii) the type of V is −1,

(iv) there exists a nonzero v ∈ V such that bv = 0 and pv = −v.

Moreover, V is unique up to isomorphism of A-modules. In addition, there exists a basis v1, . . . , vn

of V such that
bvi = vi+1 (1 ≤ i ≤ n) (65)

and
pvi = (−1)n−i+1(vi + vi+1) (1 ≤ i ≤ n), (66)

where vn+1 = 0.
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In view of Proposition 10.6, we make the following definition.

Definition 10.7 For all n ∈ Z>0 we write V−
−1,n to denote the unique A-module which satisfies

(i)–(iv) of Proposition 10.6.

We now state the analogue of Proposition 10.5 for V−
−1,n.

Proposition 10.8 Fix n ∈ Z>0 and let v1, . . . , vn denote a basis for V−
−1,n which satisfies (65) and

(66). Then for 1 ≤ i ≤ n,

evi =

{
vi + vi+1 if n − i is odd;
0 if n − i is even;

fvi =

{
0 if n − i is odd;
vi + vi+1 if n − i is even;

ξvi = vi+2.

Here vj = 0 for all j > n and ξ is from (33).

Proof. This is similar to the proof of Proposition 10.5. 2

Summarizing the results of this section, we have the following.

Proposition 10.9 Fix n ∈ Z>0. The A-modules V+
−1,n and V−

−1,n are nonisomorphic. Moreover,
every n-dimensional indecomposable A-module of type −1 is isomorphic to one of V+

−1,n and V−
−1,n.

11 The Indecomposable A-Modules of Type 1

In this section we consider indecomposable A-modules of type 1. This case is obtained from the
type −1 case by reversing the roles of b and p. We state the analogues of the main results of section
10 without further proof.

Proposition 11.1 Let V denote an indecomposable A-module of type 1. Then V is an elementary
Jordan block for p.

Proposition 11.2 Let V denote an indecomposable A-module of type 1. The kernel of p on V is
one-dimensional and is spanned by an eigenvector for b. The associated eigenvalue is 1 or −1.

Proposition 11.3 Fix n ∈ Z>0. There exists an A-module V such that

(i) V is indecomposable,

(ii) dimV = n,

(iii) the type of V is 1,

(iv) there exists a nonzero v ∈ V such that pv = 0 and bv = v.
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Moreover, V is unique up to isomorphism of A-modules. In addition, there exists a basis v1, . . . , vn

of V such that
bvi = (−1)n−i (vi + vi+1) (1 ≤ i ≤ n) (67)

and
pvi = vi+1 (1 ≤ i ≤ n), (68)

where v+
n+1 = 0.

Definition 11.4 For all n ∈ Z>0 we write V+
1,n to denote the unique A-module which satisfies

(i)–(iv) of Proposition 11.3.

Proposition 11.5 Fix n ∈ Z>0 and let v1, . . . , vn denote a basis for V+
1,n which satisfies (67) and

(68). Then for 1 ≤ i ≤ n,

evi =

{
0 if n − i is odd;
vi + vi+1 if n − i is even;

and

fvi =

{
−vi+1 if n − i is odd;
vi if n − i is even;

ξvi = vi − vi+2.

Here vj = 0 for all j > n and ξ is from (33).

Proposition 11.6 Fix n ∈ Z>0. There exists an A-module V such that

(i) V is indecomposable,

(ii) dimV = n,

(iii) the type of V is 1,

(iv) there exists a nonzero v ∈ V such that pv = 0 and bv = −v.

Moreover, V is unique up to isomorphism of A-modules. In addition, there exists a basis v1, . . . , vn

of V such that
bvi = (−1)n−i+1 (vi + vi+1) (1 ≤ i ≤ n) (69)

and
pvi = vi+1 (1 ≤ i ≤ n), (70)

where vn+1 = 0.

Definition 11.7 For all n ∈ Z>0 we write V−
1,n to denote the unique A-module which satisfies

(i)–(iv) of Proposition 11.6.

Proposition 11.8 Fix n ∈ Z>0 and let v1, . . . , vn denote a basis for V−
1,n which satisfies (69) and

(70). Then for 1 ≤ i ≤ n,

evi =

{
vi + vi+1 if n − i is odd;
0 if n − i is even;

fvi =

{
vi if n − i is odd;
−vi+1 if n − i is even;

ξvi = vi − vi+2.

Here vj = 0 for all j > n and ξ is from (33).
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Proposition 11.9 Fix n ∈ Z>0. The A-modules V+
1,n and V−

1,n are nonisomorphic. Moreover,
every n-dimensional indecomposable A-module of type 1 is isomorphic to one of V+

1,n and V−
1,n.

12 The Classification of the Indecomposable A-Modules

Combining the results of sections 9–11, we obtain the following classification of the finite-dimensional
indecomposable A-modules.

Theorem 12.1 The following are finite-dimensional indecomposable A-modules:

V+
1,n, V−

1,n, V+
−1,n, V−

−1,n; n ∈ Z>0;

Vc,2n; c ∈ C\{−1, 1}, n ∈ Z>0, n even.
(71)

Moreover, every finite-dimensional indecomposable A-module is A-module isomorphic to exactly
one of the A-modules in (71). We note these modules are as in Definitions 9.5, 10.4, 10.7, 11.4,
and 11.7.

Proof. All of the A-modules in (71) are indecomposable by definition. To prove the last assertion
of the theorem, let V denote an indecomposable A-module, set n = dimV , and let c denote the
type of V . If c 6= −1 and c 6= 1 then by Proposition 9.6 the dimension n is even and V is A-module
isomorphic to Vc,n. If c = −1 then V is isomorphic to exactly one of V+

−1,n and V−
−1,n by Proposition

10.9. If c = 1 then V is isomorphic to exactly one of V+
1,n and V−

1,n by Proposition 11.9. 2

13 The Classification of the Irreducible A-Modules

Recall an A-module V is said to be irreducible whenever it is nonzero and has no A-submodules
other than 0 and V . Observe every irreducible A-module is indecomposable. We now classify the
finite-dimensional irreducible A-modules up to isomorphism.

Theorem 13.1 The following are finite-dimensional irreducible A-modules:

V+
1,1, V−

1,1, V+
−1,1, V−

−1,1, Vc,2; c ∈ C\{−1, 1}.

Moreover, every finite-dimensional irreducible A-module is A-module isomorphic to exactly one of
the A-modules in (13.1).

Proof. By definition the A-modules V+
1,1,V

−
1,1,V

+
−1,1, and V−

−1,1 are one-dimensional and therefore
irreducible. Now fix c ∈ C such that c 6= −1 and c 6= 1. We show Vc,2 is irreducible. Recall Vc,2 has
dimension 2, so we need only show it has no one-dimensional A-submodules. Suppose there exists a
one-dimensional A-submodule W . Then W is spanned by a vector which is a common eigenvector
for b and p. Setting m = 1 in (47)–(50), we routinely find Vc,2 has no common eigenvector for b
and p. Therefore W does not exist, so Vc,2 is irreducible.

To prove the last assertion of the theorem, suppose V is an irreducible A-module and let n
denote the dimension of V . Observe V is indecomposable and let c denote the type of V . We
consider three cases.

First suppose c = −1. By Proposition 10.2, the kernel of b on V is a one-dimensional A-
submodule of V . This kernel is equal to V by irreducibility, so n = 1. Now V is A-module
isomorphic to one of V+

−1,1 and V−
−1,1 by Proposition 10.9.
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Next suppose c = 1. By Proposition 11.2, the kernel of p on V is a one-dimensional A-submodule
of V . This kernel is equal to V by irreducibility, so n = 1. Now V is A-module isomorphic to one
of V+

1,1 and V−
1,1 by Proposition 11.9.

Finally, suppose c 6= −1 and c 6= 1. By Proposition 9.6 we find n is even and V is A-module
isomorphic to Vc,n. Set n = 2m and let v1, . . . , vm, w1, . . . , wm denote a basis for V which satisfies
(47)–(50). Setting i = m in (47)–(50) we find Span{vm, wm} is a nonzero submodule of V . Since V
is irreducible, we must have V = Span{vm, wm}. Therefore m = 1 and n = 2. Now V is A-module
isomorphic to Vc,2. 2

14 A Basis for T when d = 2

Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing intersection
numbers or dual intersection numbers. In this section we give a basis for T . We begin with a basis
for T u1.

Proposition 14.1 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. The following is a basis for T u1.

u1, e∗1u1, e1u1, e1e
∗
1u1, e∗1e1u1, e∗1e1e

∗
1u1, e1e

∗
1e1u1,

e1e
∗
1e1e

∗
1u1, e∗1e1e

∗
1e1u1, e∗1e1e

∗
1e1e

∗
1u1, e1e

∗
1e1e

∗
1e1u1, . . .

(72)

Proof. Recall by Proposition 3.6 there exists a C-algebra isomorphism ϕ : A → T u1 such that
ϕ(e) = e1u1 and ϕ(f) = e∗1u1. A basis for A is given in (31). Apply ϕ to this basis and recall u1

is a central idempotent to obtain (72). The result follows. 2

We now give a basis for T .

Proposition 14.2 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. Then T has a basis consisting of

eie
∗
0ej (0 ≤ i, j ≤ 2), (73)

together with

1, e∗1, e1, e1e
∗
1, e∗1e1, e∗1e1e

∗
1, e1e

∗
1e1,

e1e
∗
1e1e

∗
1, e∗1e1e

∗
1e1, e∗1e1e

∗
1e1e

∗
1, e1e

∗
1e1e

∗
1e1, . . .

(74)

Proof. We first show (73) and (74) together span T . By (15) we have T = T u0 + T u1. By [29,
Proposition 12.2] the elements listed in (73) form a basis for T u0. We show T u1 is contained in
the span of (73), (74). A basis for T u1 is given in (72), so it suffices to show each element of this
basis is in the span of (73), (74). But this is immediate since u1 = 1 − u0. We have now shown
(73) and (74) together span T .

We now show the elements in (73), (74) are linearly independent. We mentioned the elements in
(73) form a basis for T u0, so they are linearly independent. Now suppose there exists a nontrivial
linear combination of the elements in (74) which is contained in the span of (73). Multiplying by
u0 and recalling u0u1 = 0 we find the corresponding linear combination of the elements in (72) is
equal to zero. This contradicts Proposition 14.1. Therefore the elements in (73), (74) are linearly
independent, and the result follows. 2
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15 The Center of T when d = 2

Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing intersection
numbers or dual intersection numbers. In this section we describe the center of T . We begin by
describing the center of T u1.

Proposition 15.1 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. Then the following hold.

(i) The center of T u1 is the subalgebra of T u1 generated by

(e1e
∗
1 + e∗1e1 − e1 − e∗1 + 1)u1.

(ii) The center of T u1 is C-algebra isomorphic to C[λ].

Proof. (i) By Proposition 5.4(i) the center of A is generated by ξ, where ξ is from (33). Applying
the C-algebra isomorphism ϕ : A → T u1 of Proposition 3.6 we find the center of T u1 is generated
by ϕ(ξ). Using (17) and (18) we find ϕ(ξ) = (e1e

∗
1 + e∗1e1 − e1 − e∗1 + 1)u1.

(ii) This is immediate from Proposition 5.4(ii), since T u1 is C-algebra isomorphic to A. 2

We now describe the center of T .

Proposition 15.2 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra
vanishing intersection numbers or dual intersection numbers. Then the following hold.

(i) The center of T is the subalgebra of T generated by u0 and (e1e
∗
1 + e∗1e1 − e1 − e∗1 + 1)u1.

(ii) The center of T is C-algebra isomorphic to C ⊕ C[λ].

Proof. By (15) the center of T is equal to Z0 + Z1, where Z0 denotes the center of T u0 and Z1

denotes the center of T u1. Recall T u0 is C-algebra isomorphic to M3(C), so Z0 = Span{u0}. The
center Z1 is given in Proposition 15.1. The result follows. 2

16 A Classification of the Indecomposable T -Modules and Irre-
ducible T -Modules when d = 2

Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing intersection
numbers or dual intersection numbers. In this section we classify the finite-dimensional indecom-
posable T -modules up to isomorphism and we classify the finite-dimensional irreducible T -modules
up to isomorphism. We begin with some comments concerning the relationship between A-modules
and T -modules.

In view of (15), we may identify the T u1-modules with the T -modules on which u0 = 0. Recall
the map ϕ : A → T u1 of Proposition 3.6 is a C-algebra isomorphism. Using ϕ we may identify the
T -modules on which u0 = 0 with the A-modules. In concrete terms, this identification is carried
out as follows. Let V denote an A-module. When V is viewed as a T -module on which u0 = 0,
the action of T is given by

T × V → V
t, v 7→ φ(t)v
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where φ is from Proposition 3.5. Conversely, let V denote a T -module on which u0 = 0. When V
is viewed as an A-module the action of A is given by

A× V → V
a, v 7→ ϕ(a)v

We now classify the indecomposable T -modules.

Theorem 16.1 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra van-
ishing intersection numbers or dual intersection numbers. The following are finite-dimensional
indecomposable T -modules:

the primary module,

V+
1,n, V−

1,n, V+
−1,n, V−

−1,n; n ∈ Z>0;

Vc,n; c ∈ C\{−1, 1}, n ∈ Z>0, n even.

(75)

Moreover, every finite-dimensional indecomposable T -module is T -module isomorphic to exactly
one of the T -modules in (75).

Proof. The primary module is irreducible by definition, and is therefore indecomposable. The
remaining modules in (75) are indecomposable as A-modules by Theorem 12.1. They are indecom-
posable as T -modules in view of the discussion preceeding the theorem.

To prove the last assertion of the theorem, suppose V is an indecomposable T -module. Since
u0 is a central idempotent, the spaces u0V and u1V are T -submodules of V and

V = u0V + u1V (direct sum).

Therefore, either u0V = 0 or u1V = 0. If u1V = 0 then V = u0V . By [29, Proposition 14.5] such a
T -module is a direct sum of copies of the primary module. Since V is indecomposable there is only
one summand, and V is T -module isomorphic to the primary module. If u0V = 0 then we view V
as an A-module as in the discussion preceeding the theorem, and observe V is indecomposable as
an A-module. Now the result follows from Theorem 12.1. 2

We now classify the irreducible T -modules.

Theorem 16.2 Let T be as in Definition 2.2, suppose d = 2, and suppose T has no extra vanishing
intersection numbers or dual intersection numbers. The following are finite-dimensional irreducible
T -modules:

the primary module,

V+
1,1, V−

1,1, V+
−1,1, V−

−1,1, Vc,2; c ∈ C\{−1, 1}.
(76)

Moreover, every finite-dimensional irreducible T -module is T -module isomorphic to exactly one of
the T -modules in (76).

Proof. The primary module is irreducible by definition. The remaining T -modules in (76) are
irreducible as A-modules by Theorem 13.1. They are irreducible as T -modules in view of the
discussion preceeding Theorem 16.1.
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To prove the last assertion of the theorem, suppose V is an irreducible T -module. Since u0 is
a central idempotent, the spaces u0V and u1V are T -submodules of V and

V = u0V + u1V (direct sum).

Therefore, either u0V = 0 or u1V = 0. If u1V = 0 then V = u0V . By [29, Proposition 14.5] such
a T -module is a direct sum of copies of the primary module. Since V is irreducible there is only
one summand, and V is T -module isomorphic to the primary module. If u0V = 0 then we may
view V as an irreducible A-module and the result follows from Theorem 13.1. 2
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