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Abstract

Several authors have examined connections among restricted permutations, contin-
ued fractions, and Chebyshev polynomials of the second kind. In this paper we prove
analogues of these results for involutions which avoid 3412. Our results include a recur-
sive procedure for computing the generating function for involutions which avoid 3412
and any set of additional patterns. We use our results to give generating functions
for involutions which avoid 3412 and various additional patterns. We express these
generating functions in terms of Chebyshev polynomials of the second kind.
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1 Introduction and Notation

Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation, and suppose
π ∈ Sn. We write |π| to denote the length of π, and for all i, 1 ≤ i ≤ n, we write π(i) to
denote the ith element of π. We say π is an involution whenever π(π(i)) = i for all i,
1 ≤ i ≤ n, and we write In to denote the set of involutions in Sn. Now suppose π ∈ Sn

and σ ∈ Sk. We say a subsequence of π has type σ whenever it has all of the same pairwise
comparisons as σ. For example, the subsequence 2869 of the permutation 214538769 has
type 1324. We say π avoids σ whenever π contains no subsequence of type σ. For example,
the permutation 214538769 avoids 312 and 2413, but it has 2586 as a subsequence so it does
not avoid 1243. In this setting σ is sometimes called a pattern or a forbidden subsequence
and π is sometimes called a restricted permutation or a pattern-avoiding permutation. In
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this paper we will be interested in permutations (and often only involutions) which avoid
several patterns, so for any set R of permutations we write Sn(R) (resp. In(R)) to denote the
set of permutations (resp. involutions) in Sn which avoid every pattern in R and we write
S(R) (resp. I(R)) to denote the set of all permutations (resp. involutions), including the
empty permutation, which avoid every pattern in R. When R = {π1, π2, . . . , πr} we often
write Sn(R) = Sn(π1, π2, . . . , πr), In(R) = In(π1, π2, . . . , πr), S(R) = S(π1, π2, . . . , πr), and
I(R) = I(π1, π2, . . . , πr).

As several authors have shown, generating functions for various subsets of S(132) and
S(1243, 2143) have close connections with continued fractions and Chebyshev polynomials
of the second kind, and can often be computed recursively. For example, Egge and Mansour
[EM03, Thm. 5.4] have shown that

∑

π∈S(1243,2143)

∏

k≥1

x
ωk(π)
k = 1 +

x1

1 − x1 −
x1x2

1 − x1x2 −
x1x

2
2x3

1 − x1x
2
2x3 −

x1x
3
2x

3
3x4

1 − x1x
3
2x

3
3x4 − · · ·

, (1)

where ωk(π) is the number of subsequences of type 12 . . . k in π. Egge and Mansour have
also shown [EM03, Thm. 6.5] that

∞∑

n=0

|Sn(1243, 2143, 12 . . . k)|xn = 1 +

√
xUk−2

(
1−x
2
√

x

)

Uk−1

(
1−x
2
√

x

) , (2)

where Un(x) is the nth Chebyshev polynomial of the second kind, which may be defined by

Un(cos t) =
sin((n + 1)t)

sin t
. Meanwhile, Krattenthaler has shown [Kra01, Theorem 3] that

∑

π

x|π| =
∑ b∏

i=2

(
li−1 + li − 1

li

)(Uk−1

(
1

2
√

x

))l1−1

(
Uk

(
1

2
√

x

))l1+1
x

1
2
(l1−1)+

b∑
j=2

lj
. (3)

Here the sum on the left is over all permutations in S(132) which contain exactly r sub-
sequences of type 12 . . . k and the sum on the right is over all sequences l1, l2, . . . , lb of

nonnegative integers such that
b∑

i=1

li
(

k+i−2
k−1

)
= r. Finally, Mansour and Vainshtein have given

[MV01, Thm. 2.1] the following recursive formula for fπ(x) =
∞∑

n=0

|Sn(132, π)|xn, which

makes it possible to compute fπ(x) for any π ∈ S(132).

fπ(x) = 1 + x

r∑

j=0

(fπj (x) − fπj−1(x)) fσj(x) (4)

Here πj−1, πj, and σj are the types of certain subsequences of π. For other results involving
S(132) and continued fractions or Chebyshev polynomials, see [MV02] and the references
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therein. For other results involving S(1243, 2143) and continued fractions or Chebyshev
polynomials, see [EM03] and [Rei03].

Involutions which avoid 3412 are known to have many properties which are analogous to
properties of permutations which avoid 132. For instance, it is well known that |Sn(132)| =
Cn for all n ≥ 0, where Cn is the nth Catalan number, which may be defined by C0 = 1 and

Cn =
n∑

i=1

Ci−1Cn−i (n ≥ 1).

(The Catalan number Cn may also be defined by Cn = 1
n+1

(
2n
n

)
.) As a result, for all n ≥ 0,

the set Sn(132) is in bijection with the set of Dyck paths. These are the lattice paths from
(0, 0) to (2n, 0) which contain only up (1, 1) and down (1,−1) steps and which do not pass
below the line y = 0. Guibert [Gui95, Rem. 4.28] has shown that |In(3412)| = Mn for all
n ≥ 0, where Mn is the nth Motzkin number, which may be defined by M0 = 1 and

Mn = Mn−1 +
n∑

i=2

Mi−2Mn−i (n ≥ 1).

As a result, for all n ≥ 0, the set In(3412) is in bijection with the set Mn of Motzkin paths.
These are the lattice paths from (0, 0) to (n, 0) which contain only up (1, 1), down (1,−1),
and level (1, 0) steps and which do not pass below the line y = 0. We write M to denote the
set of all Motzkin paths, including the empty path. (For a partial list of other combinatorial
objects counted by the Motzkin numbers, see [Sta99, pp. 238–9].)

Motivated by the parallels among S(132), S(1243, 2143), and I(3412), in this paper we
prove analogues of (1), (2), (3), (4), and several similar results for I(3412). We begin with
some results concerning I(3412) and continued fractions. We first define statistics τk, k ≥ 1,
on M and I(3412). On I(3412), the statistic τk is the number of subsequences of type
k . . . 21. On M, the statistic τk is a sum of binomial coefficients over the steps in the path.
We then give a simple τk-preserving bijection ϕ : M → I(3412). Using ϕ and a result of
Flajolet, we prove the following analogue of (1).

∑

π∈I(3412)

∏

k≥1

x
τk(π)
k =

1

1 − x1 −
x2

1x2

1 − x1x
2
2x3 −

x2
1x

5
2x

4
3x4

1 − x1x
4
2x

6
3x

4
4x5 − · · ·

(5)

Here the nth numerator is
2n∏
i=1

x
(2n−2

i−1 )+(2n−1
i−1 )

i and the nth denominator is 1 −
2n+1∏
i=1

x
( 2n

i−1)
i .

By specializing the xis in (5) appropriately, we obtain continued fraction expansions of the
generating functions for several other statistics on In(3412), including inversions, left-to-right
maxima, and right-to-left minima.

We then turn our attention to analogues of (2), (3), and (4). We first use ϕ and some
well-known results concerning lattice paths to find the generating function for the involutions
in I(3412) which contain exactly r subsequences of type k . . . 21. This generating function
is an analogue of the generating function in (3), and we express it in terms of Chebyshev
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polynomials. We then find a recurrence relation for FT (x) =
∞∑

n=0

|In(3412, T )|xn which

enables us to compute FT (x) for any set T of permutations. As a special case we have

Fπ(x) = 1 + xFβ(x) + x2

k∑

i=1

(
Fα1⊕···⊕αi

(x) − Fα1⊕···⊕αi−1
(x)
)
Fαi⊕...⊕αk

(x) (6)

for any permutation π. Here the various subscripts of F on the right are the types of certain
subsequences of π. This result is an analogue of (4).

Next we use (6) to compute Fπ(x) for various π. For example, we show that for all k ≥ 1,

F(2k)...21(x) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) (7)

and

F(2k−1)...21(x) =
Uk−1

(
1−x
2x

)
+ Uk−2

(
1−x
2x

)

x
(
Uk

(
1−x
2x

)
+ Uk−1

(
1−x
2x

)). (8)

These results are analogues of (2). We also show that

F[k,l](x) = F[k+l](x), (9)

where [l1, l2, . . . , lm] is the layered permutation given by

[l1, l2, . . . , lm] = l1, l1−1, . . . , 1, l2 + l1, l2 + l1−1, . . . , l1 +1, . . . ,
m∑

i=1

li,
m∑

i=1

li−1, . . . ,
m−1∑

i=1

li +1.

For m ≥ 2 the generating function F[l1,...,lm](x) does not reduce quite as nicely as it does
when m = 2. Nevertheless, we conjecture that F[l1,...,lm](x) is symmetric in l1, . . . , lm for all
m ≥ 1 and all l1, . . . , lm ≥ 1. This conjecture has been verified for m ≤ 4 and li ≤ 20, as
well as for m = 5 and li ≤ 11, using a Maple program.

We conclude the paper by mentioning several directions for future research.

2 Two Families of Statistics and a Bijection

In this section we give two infinite families of statistics, one on M and the other on I(3412).
We then give a simple bijection between Mn and In(3412) which relates our two families of
statistics. We begin by recalling the recursive structure of M.

Definition 2.1 For any Motzkin paths π1 and π2, we write

π1 ∗ π2 = Uπ1Dπ2.

Proposition 2.2 (i) For all n ≥ 1, the map

Mn−1 −→ Mn

π 7→ Lπ

is a bijection between Mn−1 and the set of Motzkin paths in Mn which begin with a
level step.
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(ii) For all n ≥ 2 and all j such that 2 ≤ j ≤ n, the map

Mj−2 ×Mn−j −→ Mn

(π1, π2) 7→ π1 ∗ π2

is a bijection between Mj−2 ×Mn−j and the set of Motzkin paths in Mn which begin
with an up step and first return to the x-axis at x = j.

Next we define our statistics on Motzkin paths.

Definition 2.3 Suppose π is a Motzkin path. For any step s ∈ π, we write ht(s) to denote
the height of s, which is the x-coordinate of the left-most point of s. For any k we write

τk(π) =
∑

s∈π

(
2ht(s)

k − 1

)
+
∑

s∈π

(
2ht(s) − 1

k − 1

)
,

where the first sum on the right is over all up and level steps in π and the second sum on the
right is over all down steps in π. Here we use the convention that

(
n
k

)
= 0 whenever k < 0

or k > n.

Example 2.4 If π = ULUUDLDDLUD then τ1(π) = 11, τ2(π) = 22, τ3(π) = 27, τ4(π) =
19, τ5(π) = 7, τ6(π) = 1, and τk(π) = 0 for all other k.

As we show next, the statistics τk are compatible with the recursive structure of M.

Proposition 2.5 (i) For all n ≥ 1, all k, and all π ∈ Mn−1,

τk(Lπ) =

(
0

k − 1

)
+ τk(π). (10)

(ii) For all n ≥ 2, all j such that 2 ≤ j ≤ n, all k, all π1 ∈ Mj−2, and all π2 ∈ Mn−j ,

τk(π1 ∗ π2) =

(
0

k − 1

)
+

(
1

k − 1

)
+ τk−2(π1) + 2τk−1(π1) + τk(π1) + τk(π2). (11)

Proof. (i) This is immediate from the definition of τk.
(ii) By definition of τk and π1 ∗ π2 we have

τk(π1 ∗ π2) =

(
0

k − 1

)
+
∑

s∈π1

(
2ht(s) + 2

k − 1

)
+
∑

s∈π1

(
2ht(s) + 1

k − 1

)
+

(
1

k − 1

)
+ τk(π2).

Here the first sum on the right is over all up and level steps in π1 and the second sum on the
right is over all down steps in π1. Now (ii) follows from the fact that for all n ≥ 0 and all k,

(
n + 2

k − 1

)
=

(
n

k − 3

)
+ 2

(
n

k − 2

)
+

(
n

k − 1

)
.

2

We now turn our attention to I(3412), beginning with its recursive structure. We start
with some notation.
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Definition 2.6 Suppose π ∈ Sm and σ ∈ Sn. We write π ⊕ σ to denote the permutation in
Sm+n given by

(π ⊕ σ)(i) =

{
π(i) if 1 ≤ i ≤ m,
σ(i− m) + m if m + 1 ≤ i ≤ m + n.

We refer to π ⊕ σ as the direct sum of π and σ.

Definition 2.7 Suppose π ∈ Sm and σ ∈ Sn. We write π 	 σ to denote the permutation in
Sm+n given by

(π 	 σ)(i) =

{
π(i) + n if 1 ≤ i ≤ m,
σ(i− n) if m + 1 ≤ i ≤ m + n.

We refer to π 	 σ as the skew sum of π and σ.

Definition 2.8 For any π1, π2 ∈ I(3412) we write

π1 ∗ π2 = (1 	 π1 	 1) ⊕ π2.

We have now defined ∗ on both M × M and I(3412) × I(3412), but it will always be
clear from the context which definition is intended.

Proposition 2.9 (i) For all n ≥ 1, the map

In−1(3412) −→ In(3412)
π 7→ 1 ⊕ π

is a bijection between In−1(3412) and the set of involutions in In(3412) which begin
with 1.

(ii) For all n ≥ 0 and all j such that 2 ≤ j ≤ n, the map

Ij−2(3412) × In−j(3412) −→ In(3412)
(π1, π2) 7→ π1 ∗ π2

is a bijection between Ij−2(3412) × In−j(3412) and the set of involutions in In(3412)
which begin with j.

Proof. (i) This is immediate.
(ii) It is sufficient to show that the image of the given map is contained in In(3412) and

that the map is one-to-one and onto. The former is routine, so we consider the latter.
Suppose π ∈ In(3412) begins with j. Since π is an involution, we must also have π(j) = 1.

Moreover, if there exists k > j such that k appears between j and 1 in π then π(k) 6= k and
the subsequence j, k, 1, π(k) has type 3412. Since π avoids 3412, the entries between j and
1 in π are 2, . . . , j − 1. It follows that there exist unique involutions π1 ∈ Ij−2(3412) and
π2 ∈ In−j(3412) such that π = π1 ∗ π2, so the given map is one-to-one and onto, as desired.
2

We now define our statistics on I(3412).

Definition 2.10 For any positive integer k and any permutation π, we write τk(π) to denote
the number of decreasing subsequences of length k in π. For notational convenience we set
τk(π) = 0 for all k ≤ 0.
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We have now defined τk on both M and I(3412), but it will always be clear from the
context which definition is intended. As we show next, the statistics τk are compatible with
the recursive structure of I(3412).

Proposition 2.11 (i) For all n ≥ 1, all k, and all π ∈ In−1(3412) we have

τk(1 ⊕ π) =

(
0

k − 1

)
+ τk(π). (12)

(ii) For all n ≥ 0, all j such that 2 ≤ j ≤ n, all k, all π1 ∈ Ij−2(3412), and all π2 ∈
In−j(3412) we have

τk(π1 ∗ π2) =

(
0

k − 1

)
+

(
1

k − 1

)
+ τk−2(π1) + 2τk−1(π1) + τk(π1) + τk(π2). (13)

Proof. (i) This is immediate from the definition of τk.
(ii) Observe that every decreasing subsequence of length at least two in π1 ∗π2 is entirely

contained in either 1	 π1 	 1 or π2. With this in mind, (ii) is immediate from the definition
of π1 ∗ π2. 2

Next we introduce a bijection between Mn and In(3412) which is compatible with the
statistics τk and the recursive structures of M and I(3412).

Definition 2.12 For any π ∈ Mn, we write ϕ(π) to denote the permutation obtained as
follows. Number the steps in π from left to right with 1, 2, . . . , n. For each up step at height
k, find the first down step at height k + 1 to its right and switch the labels of the two steps.
Then ϕ(π) is the involution obtained by reading the resulting labels from left to right.

Example 2.13 If π = ULUDDLUD then ϕ(π) = 52431687.

Remark The map ϕ also appears in [Gui95, Rem. 4.28].

Proposition 2.14 For all n ≥ 0, the map ϕ is a bijection between In(3412) and Mn such
that τk(ϕ(π)) = τk(π) for all k and all π ∈ M.

Proof. Observe that if π1 and π2 are Motzkin paths then ϕ(Lπ1) = 1⊕ϕ(π) and ϕ(π1∗π2) =
ϕ(π1) ∗ϕ(π2). Arguing by induction on n, the result now follows from Propositions 2.2, 2.5,
2.9, and 2.11. 2

For all π ∈ Mn, let πrc denote the Motzkin path in Mn obtained from π by re-
versing the order of the steps and switching the up and down steps. For example, if
π = ULUUDLUUDDLLDDLUD then πrc = UDLUULLUUDDLUDDLD. Geometri-
cally, πrc is the path obtained by reflecting π over the line x = n

2
. We conclude this section

by showing that the map on In(3412) which corresponds via ϕ to the map π 7→ πrc is the
well-known reverse complement map.

Proposition 2.15 For any π ∈ M, let πrc be as in the paragraph above. For any π ∈
In(3412), let πrc denote the permutation obtained by reversing the order of the entries in π
and then replacing each entry i with n + 1 − i. Then ϕ(πrc) = ϕ(π)rc for all π ∈ M.
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Proof. For notational convenience we set α = ϕ(π), β = ϕ(πrc), and n = |π|.
Observe that for any i, 1 ≤ i ≤ n, we have α(i) = i if and only if the ith step of π is

a level step. This happens if and only if the n + 1 − ith step of πrc is a level step, which
happens if and only if β(n+1− i) = n+1− i. It follows that αrc and β have the same fixed
points.

Similarly, for all i, j such that 1 ≤ i < j ≤ n we have α(i) = j and α(j) = i if and only
if the ith step of π is an up step and the jth step of π is the corresponding down step. This
happens if and only if the n + 1 − ith step of πrc is a down step and the n + 1 − jth step of
π is the corresponding up step, which happens if and only if β(n + 1 − i) = n + 1 − j and
β(n + 1 − j) = n + 1 − i. It follows that αrc and β have the same 2-cycles.

Combining these observations, we find that the entries of αrc are the same as the entries
of β, so αrc = β, as desired. 2

3 Continued Fractions

In this section we combine our bijection ϕ with a result of Flajolet to express the generating
function for I(3412) with respect to τk, k ≥ 1, as a continued fraction. By specializing the
indeterminates in this result appropriately, we also obtain continued fraction expansions of
the generating functions for several other statistics on In(3412), including inversions, left-to-
right maxima, and right-to-left minima. We begin by setting some notation.

Definition 3.1 For any given expressions ai (i ≥ 0) and bi (i ≥ 0) we write

a0

b0 +

a1

b1 +

a2

b2 +

a3

b3 +
. . .

to denote the infinite continued fraction

a0

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

.

We use the corresponding notation for finite continued fractions.

We now recall the relevant specialization of Flajolet’s result.

Theorem 3.2 (Flajolet [Fla80, Theorem 1]) For all i ≥ 1, let xi denote an indeterminate.
Then we have

∑

π∈M

∏

k≥1

x
τk(π)
k =

1

1 − x1 −
x2

1x2

1 − x1x2
2x3 −

x2
1x

5
2x

4
3x4

1 − x1x4
2x

6
3x

4
4x5 − · · · −

2n∏
i=1

x
(2n−2

i−1 )+(2n−1
i−1 )

i

1 −
2n+1∏
i=1

x
( 2n

i−1)
i

− · · · .

(14)

Combining this with Proposition 2.14, we obtain the following result.
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Theorem 3.3 For all i ≥ 1, let xi denote an indeterminate. Then we have

∑

π∈I(3412)

∏

k≥1

x
τk(π)
k =

1

1 − x1 −
x2

1x2

1 − x1x2
2x3 −

x2
1x

5
2x

4
3x4

1 − x1x4
2x

6
3x

4
4x5 − · · · −

2n∏
i=1

x
(2n−2

i−1 )+(2n−1
i−1 )

i

1 −
2n+1∏
i=1

x
( 2n

i−1)
i

− · · · .

(15)

Using (15) we can express the generating function for In(3412, k . . . 21) as a finite con-
tinued fraction.

Corollary 3.4 For all k ≥ 1 we have

∞∑

n=0

|In(3412, (2k) . . . 21)|xn =
1

1 − x −
x2

1 − x −
x2

1 − x − · · · −
x2

1 − x︸ ︷︷ ︸
k−1 terms

(16)

and
∞∑

n=0

|In(3412, (2k + 1) . . . 21)|xn =
1

1 − x −
x2

1 − x −
x2

1 − x − · · · −
x2

1 − x︸ ︷︷ ︸
k−1 terms

−
x2

1
. (17)

Proof. To prove (16), set x1 = x, xi = 1 for all i, 2 ≤ i < 2k, and xi = 0 for all i ≥ 2k in
(15).

The proof of (17) is similar to the proof of (16). 2

We can also use (15) to express the generating function for I(3412) with respect to various
statistics as a continued fraction.

Corollary 3.5 For any permutation π, let inv(π) denote the number of inversions in π.
Then

∑

π∈I(3412)

qinv(π)x|π| =
1

1 − x −
x2q

1 − xq2 −
x2q5

1 − xq4 − · · · −
xq4n−3

1 − xq2n − · · · .

Proof. In (15), set x1 = x, x2 = q, and xi = 1 for all i ≥ 3. 2

For our next application of (15), recall that a left-to-right maximum in a permutation π
is an entry of π which is greater than all of the entries to its left. Similarly, a right-to-left
minimum in π is an entry of π which is less than all of the entries to its right. As we show
next, if π ∈ I(3412) then the number of left-to-right maxima and the number of right-to-left
minima in π can be expressed in terms of the statistics τk. Combining this with (15), we
obtain a continued fraction expansion of the generating function for In(3412) with respect
to left-to-right maxima or right-to-left minima.

Proposition 3.6 For any permutation π, let lrmax(π) denote the number of left-to-right
maxima in π and let rlmin(π) denote the number of right-to-left minima in π. Then for all
π ∈ I(3412),

lrmax(π) = rlmin(π) =
∞∑

k=1

(−1)k−1τk(π).

9



Proof. Set τ =
∞∑
i=1

(−1)i+1τi and use Proposition 2.11 to find that for all π1, π2 ∈ I(3412) we

have τ (1 ⊕ π1) = 1 + τ (π1) and τ (π1 ∗ π2) = 1 + τ (π2). It is routine to verify that the same
relations hold when τ is replaced with lrmax or rlmin. Using Proposition 2.9, the result
now follows by induction on the length of π. 2

Corollary 3.7 We have

∑

π∈I(3412)

qlrmax(π)x|π| =
∑

π∈I(3412)

qrlmin(π)x|π| =
1

1 − x −
x2q

1 − x −
x2

1 − x − · · · −
x2

1 − x − · · · .

Proof. In (15), set x1 = xq and xi = q(−1)i−1
for all i ≥ 2 and use Proposition 3.6 to simplify

the result. 2

For our final application of (15), recall that i is a fixed point for a permutation π whenever
π(i) = i. As we show next, if π ∈ I(3412) then the number of fixed points in π can be
expressed in terms of the statistics τk. Combining this with (15), we obtain a continued
fraction expansion of the generating function for In(3412) with respect to the number of
fixed points.

Proposition 3.8 For any permutation π, let fix(π) denote the number of fixed points in π.
Then for all π ∈ I(3412),

fix(π) =

∞∑

k=1

(−2)k−1τk(π).

Proof. This is similar to the proof of Proposition 3.6. 2

Corollary 3.9 We have

∑

π∈I(3412)

qfix(π)x|π| =
1

1 − xq −
x2

1 − xq −
x2

1 − xq − · · · −
x2

1 − xq − · · · .

Proof. In (15), set x1 = xq and xi = q(−2)i−1
for all i ≥ 2 and use Proposition 3.8 to simplify

the result. 2

We now turn our attention to the question of which statistics on I(3412) have generating
functions which can be expressed as continued fractions like the one in (15). We begin by
specifying which continued fractions we wish to consider.

By a Motzkin continued fraction we mean a continued fraction of the form

1

1 −m0 −
m0m1

1 − m2 −
m2m3

1 − m4 − · · · −
m2n−2m2n−1

1 − m2n − · · · ,

where mi is a monic monomial in a given set of variables for all i ≥ 0. Observe that if
f1, f2, f3, . . . are (possibly infinite) linear combinations of the τks with the property that
each τk appears in only finitely many fi, then by specializing the xis appropriately in (15)
we can express the generating function

∑

π∈I(3412)

x|π|
∏

k≥1

q
fk(π)
k

10



as a Motzkin continued fraction. For example, when only f1 is present, we have the following
corollary of Theorem 3.3.

Corollary 3.10 Let λ1, λ2, . . . denote nonnegative integers and let f denote the statistic

f =
∑

k≥1

λkτk

on I(3412). Then

∑

π∈I(3412)

qf(π)x|π| =
1

1 − xqf(1) −
x2qf(21)

1 − xqf(321)−f(21) −

x2qf(4321)−f(21)

1 − xqf(54321)−f(4321) − · · · −
x2qf((2n)...21)−f((2n−2)...21)

1 − xqf((2n+1)...21)−f((2n)...21) − · · · .

Proof. In (15), set x1 = xqλ1 and xi = qλi for all i ≥ 2 and use the fact that

f(n . . . 21) − f((n − 1) . . . 21) =

n−1∑

i=0

(
n − 1

i

)
λi

for all n ≥ 2 to simplify the result. 2

With the same arguments used to prove [BCS02, Thm. 2] and [EM03, Thm. 5.12], one
can also prove the following result.

Theorem 3.11 The set of Motzkin continued fractions is exactly the set of generating func-
tions for countable families of statistics on I(3412) in which each statistic is a (possibly
infinite) linear combination of the τks and each τk appears in only finitely many statistics.

4 Involutions Avoiding 3412 and Containing k . . . 21

In this section we use our bijection ϕ to find the generating function for the permutations
in I(3412) which contain exactly r decreasing subsequences of length k. We express this
generating function in terms of Chebyshev polynomials of the second kind, so we begin by
recalling these polynomials.

Definition 4.1 For all n ≥ −1, we write Un(x) to denote the nth Chebyshev polynomial of

the second kind, which is defined by Un(cos t) =
sin((n + 1)t)

sin t
. These polynomials satisfy

Un(x) = 2xUn−1(x) − Un−2(x) (n ≥ 1). (18)

We will find it useful to reformulate the recurrence in (18), replacing x with
1 − x

2x
to

obtain

xUn

(
1 − x

2x

)
= (1 − x)Un−1

(
1 − x

2x

)
− xUn−2

(
1 − x

2x

)
. (19)

Our main results in this section are the following, which give the promised generating
function. Throughout we use the convention that

(
a
0

)
= 1 and

(
a
−1

)
= 0 for any integer a.

11



Theorem 4.2 Fix r ≥ 1, k ≥ 1, and b ≥ 0 such that

r < min

((
2k + 2b + 2

2k − 1

)
,

(
2k + 2b

2k − 1

)
+

(
2k + 2b + 1

2k − 1

))
.

Then

∑

π

x|π| =
∑ b∏

i=0

(
di + di+1 + li − 1

di+1 + li

)(
di+1 + li

li

)(
Uk−1

(
1−x
2x

))d0−1

(
Uk

(
1−x
2x

))d0+1
x
−1−d0+

b∑
j=0

(2di+li)

. (20)

Here the sum on the left is over all involutions in I(3412) which contain exactly r subse-
quences of type (2k) . . . 21. The sum on the right is over all sequences d0, . . . , db and l0, . . . , lb
of nonnegative integers such that

r =
b∑

i=0

di

((
2k + 2i − 2

2k − 1

)
+

(
2k + 2i − 1

2k − 1

))
+

b∑

i=0

li

(
2k + 2i

2k − 1

)
. (21)

Theorem 4.3 Fix r ≥ 1, k ≥ 1, and b ≥ 0 such that
(
2k+2b

2k

)
≤ r <

(
2k+2b+2

2k

)
. Then

∑

π

x|π| =
∑ b∏

i=0

(
di + di−1 + li − 1

di + li

)(
di + li

li

) (
Uk

(
1−x
2x

))d0+l0−1

(
Uk+1

(
1−x
2x

)
+ Uk

(
1−x
2x

))d0+l0+1
x
−1−d0−l0+

b∑
j=0

(2dj+lj)

.

(22)
Here the sum on the left is over all involutions in I(3412) which contain exactly r subse-
quences of type (2k + 1) . . . 21. The sum on the right is over all sequences d0, . . . , db and
l0, . . . , lb of nonnegative integers such that

r =
b∑

i=0

di

((
2k + 2i + 1

2k

)
+

(
2k + 2i

2k

))
+

b∑

i=0

li

(
2k + 2i

2k

)
. (23)

For notational convenience we set d−1 = 1.

To prove these theorems, we first need to set some notation and recall some preliminary
results. We begin with some matrices which will prove useful.

Definition 4.4 For all k ≥ 0 we write Ak to denote the k + 1 by k + 1 tridiagonal matrix
given by

Ak =




x x 0 0 0 · · · 0 0 0 0
x x x 0 0 · · · 0 0 0 0
0 x x x 0 · · · 0 0 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 0 · · · x x x 0
0 0 0 0 0 · · · 0 x x x
0 0 0 0 0 · · · 0 0 x x




.

We write Bk to denote the k + 1 by k + 1 tridiagonal matrix obtained by replacing the entry
in the lower right corner of Ak with 0. We write Ck to denote the k + 1 by k + 1 tridiagonal
matrix obtained by replacing the entry in the upper left corner of Ak with 0.

12



The matrices Ak, Bk, and Ck are closely related to generating functions for various sets
of Motzkin paths. To describe this relationship, we let M(r, s, k) denote the set of lattice
paths involving only up (1, 1), down (1,−1), and level (1, 0) steps which begin at a point at
height r, 0 ≤ r ≤ k, end at a point at height s, 0 ≤ s ≤ k, and do not cross the lines y = k
and y = 0. Similarly, we let N (r, s, k) denote the set of lattice paths in M(r, s, k) which
do not have any level steps at height k, and we let O(r, s, k) denote the set of lattice paths
in M(r, s, k) which do not have any level steps at height 0. Modifying the proof of [Kra01,
Thm. A2] slightly, we find that

∑

π∈M(r,s,k)

x|π| =
(−1)r+s det(I − Ak; s, r)

det(I − Ak)
, (24)

∑

π∈N (r,s,k)

x|π| =
(−1)r+s det(I − Bk; s, r)

det(I − Bk)
, (25)

and ∑

π∈O(r,s,k)

x|π| =
(−1)r+s det(I − Ck; s, r)

det(I − Ck)
. (26)

Here |π| is the number of steps in π, I is the identity matrix of the appropriate size, and
det(M ; s, r) is the minor of the matrix M in which the sth row and rth column of M have
been deleted. The determinants in (24), (25), and (26) can often be expressed in terms of
Chebyshev polynomials of the second kind. For instance, arguing by induction on k we find
that for all k ≥ 0,

xk+1Uk+1

(
1 − x

2x

)
= det(I − Ak) (27)

and

xk+1

(
Uk+1

(
1 − x

2x

)
+ Uk

(
1 − x

2x

))
= det(I −Bk) = det(I −Ck). (28)

We now prove Theorem 4.2.
Proof of Theorem 4.2. First observe that in view of Proposition 2.14, the generating function
on the left side of (20) is the generating function for the set of Motzkin paths from (0, 0) to
(n, 0) for which τ2k(π) = r. To compute this generating function, observe that every Motzkin
path π with τ2k(π) = r can be constructed by the following procedure in exactly one way.

1. Choose d0, . . . , db and l0, . . . , lb such that (21) holds. Construct a sequence of down
and level steps which contains exactly di down steps at height k + i and li level steps
at height k + i for 0 ≤ i ≤ b and which satisfies all of the following.

(a) The step immediately preceeding a step at height j is either a down step at height
j + 1 or less or a level step at height j or less.

(b) All steps after the last down step at height j are at height j − 1 or less.

(c) The sequence ends with a down step at height k.

13



2. If the first step is at height k + j, insert j + 1 up steps before the first step. Similarly,
after each step except the last, insert enough up steps to reach the height of the next
level or down step.

3. After each down step at height k except the last, insert an (possibly empty) upside-
down Motzkin path of height at most k − 1.

4. Before the first step insert a path from height 0 to height k − 1 which does not exceed
height k − 1.

5. After the last step, insert a path from height k − 1 to height 0 which does not exceed
height k − 1.

Since the choice at each step is independent of the choices at the other steps, and since every
sequence of choices results in a path of the type desired, the desired generating function is
the product of the generating functions for each step.

To compute the generating function for step 1, suppose we have fixed d0, . . . , db and

l0, . . . , lb; then each of the resulting partial paths will have generating function x

b∑
j=0

(di+li)

. To
count these paths, we construct them from the top down. That is, we first arrange the lb
level steps at height k + b; there is one way to do this. We then place the db down steps
at height k + b so that one of these steps occurs after all of the diagonal steps. There are(

db+lb−1
lb

)
ways to do this. We then place the lb−1 level steps at height k + b− 1 so that none

of these steps immediately follows a diagonal step at height k + b. There are
(

db+lb−1

lb−1

)
ways

to do this. Proceeding in this fashion, we find that the generating function for step 1 is equal
to

∑ b∏

i=0

(
di + di+1 + li − 1

di+1 + li

)(
di+1 + li

li

)
x

b∑
j=0

(di+li)

, (29)

where the sum on the left is over all sequences d0, . . . , db and l0, . . . , lb of nonnegative integers
which satisfy (21). In the path obtained after step 2 there is exactly one up step for every
down step so the generating function for step 2 is equal to

x

b∑
j=0

di

. (30)

Using (24) and (27), we find that the generating function for step 3 is equal to

(
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

)
)d0−1

(31)

and the generating functions for steps 4 and 5 are both equal to

1

xUk

(
1−x
2x

) . (32)

Taking the product of the quantities in (29), (30), (31) and the square of the quantity in
(32), we obtain (20), as desired. 2
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The proof of Theorem 4.3 is similar to the proof of Theorem 4.2, using (25), (26), and
(28).

Theorems 4.2 and 4.3 have several interesting special cases; we give two of them here.

Corollary 4.5 For all k ≥ 1,

∑

π

x|π| =
1

(
Uk

(
1−x
2x

))2 ,

where the sum on the left is over all involutions in I(3412) which contain exactly one subse-
quence of type (2k) . . . 21.

Corollary 4.6 For all k ≥ 1,

∑

π

x|π| =
1

x
(
Uk+1

(
1−x
2x

)
+ Uk

(
1−x
2x

))2 ,

where the sum on the left is over all involutions in I(3412) which contain exactly one subse-
quence of type (2k + 1) . . . 21.

We close this section by observing that for all r ≥ 1, the number of involutions in In(3412)
which contain exactly r subsequences of type 321 can always be expressed in terms of Fi-
bonacci numbers, since U2

(
1−x
2x

)
+U1

(
1−x
2x

)
= 1−x−x2

x2 . For example, it follows from Theorem
4.3 that the number of involutions in In(3412) which contain exactly one subsequence of
type 321 is 1

5
(2(n − 1)Fn − nFn−1) and the number of involutions in In(3412) which contain

exactly two subsequences of type 321 is
5n2 − 9n

25
Fn+1 +

−15n2 + 29n − 6

50
Fn.

5 Restricted 3412-Avoiding Involutions

We now turn our attention to generating functions for involutions in I(3412) which avoid a
set of additional patterns. For any set T of permutations we write

FT (x) =
∞∑

n=0

|In(3412, T )|xn,

and we observe that F∅(x) = 0, F1(x) = 1, and F12(x) = F21(x) =
1

1 − x
. In this section we

give a recurrence relation which allows one to compute FT (x) for any T . We begin with a
method of decomposing permutations and a map on permutations.

Definition 5.1 We call a permutation π direct sum indecomposable whenever there do not
exist nonempty permutations π1 and π2 such that π = π1 ⊕ π2.

Observe that every permutation π has a unique decomposition π = α1⊕· · ·⊕αk in which
α1, . . . , αk are direct sum indecomposable.

Definition 5.2 For any permutation π, we define π as follows.

1. ∅ = ∅ and 1 = ∅.

2. If |π| ≥ 2 and there exists a permutation σ such that π = 1 	 σ 	 1 then π = σ.

15



3. If |π| ≥ 2, there exists a permutation σ such that π = 1 	 σ, and σ does not end with
1 then π = σ.

4. If |π| ≥ 2, there exists a permutation σ such that π = σ	 1, and π does not begin with
|π| then π = σ.

5. If |π| ≥ 2, π does not begin with |π|, and π does not end with 1 then π = π.

Observe that if π and σ are permutations then 1	 π 	 1 avoids σ if and only if π avoids
σ.

In order to give our recurrence relation for FT (x), we need to set some additional notation.

Definition 5.3 Let T = {π1, . . . , πm} denote a set of permutations and fix direct sum inde-
composable permutations αi

j, 1 ≤ i ≤ m, 1 ≤ j ≤ ki, such that πi = αi
1 ⊕ · · · ⊕ αi

ki
. For all

i1, . . . , im such that 0 ≤ ij ≤ kj , let T left
i1,...,im = {α1

1 ⊕ · · · ⊕ α1
i1
, . . . , αm

1 ⊕ · · · ⊕ αm
im} and let

T right
i1,...,im = {α1

i1
⊕ · · · ⊕ α1

k1
, . . . , αm

im ⊕ · · · ⊕ αm
km

}. For any subset Y ⊆ {1, . . . ,m}, set

TY =
⋃

j∈Y

{αj
1 ⊕ · · · ⊕ αj

ij−1}
⋃

j 6∈Y,1≤j≤m

{αj
1 ⊕ · · · ⊕ αj

ij
}. (33)

We now describe how to find the generating function for permutations which contain
patterns in one set while avoiding patterns in another set.

Lemma 5.4 With reference to Definition 5.3, fix i1, . . . , im such that 1 ≤ ij ≤ kj . Then the

generating function for those permutations which contain every pattern in T left
i1−1,...,im−1 and

avoid every pattern in T left
i1,...,im is

∑

Y ⊆{1,2,...,m}

(−1)|Y |FTY
(x). (34)

Proof. This follows by a routine inclusion-exclusion argument, since S(3412, TY1 ) ⊆ S(3412, TY2 )
whenever Y2 ⊆ Y1. 2

We are now ready to give our recurrence relation for FT (x).

Theorem 5.5 With reference to Definition 5.3,

FT (x) = 1 + xFβ(T )(x) + x2

k1 ,...,km∑

i1,...,im=1


 ∑

Y ⊆{1,2,...,m}

(−1)|Y |FTY
(x)


FT right

i1,...,im
(x). (35)

Here β(πi) = πi if αi
1 6= 1, β(πi) = αi

2⊕· · ·⊕αi
ki

if αi
1 = 1, and β(T ) is the set of permutations

obtained by applying β to every element of T .

Proof. The set I(3412, T ) can be partitioned into three sets: the set A1 containing only the
empty permutation, the set A2 of those involutions which begin with 1, and the set A3 of
those involutions which do not begin with 1.

The generating function for A1 is 1.
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In view of Proposition 2.9(i), the generating function for A2 is xFβ(T )(x), where β(πi) = πi

if αi
1 6= 1, β(πi) = αi

2 ⊕ · · · ⊕ αi
ki

if αi
1 = 1, and β(T ) is the set of permutations obtained by

applying β to every element of T .
To obtain the generating function for A3, we first observe that in view of Proposition

2.9(ii), all permutations in A3 have the form σ1∗σ2. Since each αi
j is direct sum indecompos-

able, if σ1 ∗σ2 contains a subsequence of type αi
j then that subsequence is entirely contained

in either 1	σ1	1 or σ2. As a result, the set of involutions which avoid 3412 and T and which
do not begin with 1 can be partitioned into sets Bi1,...,im, where Bi1,...,im is the set of such invo-

lutions in which σ1 contains T left
i1−1,...,im−1 but avoids T left

i1,...,im
and σ2 avoids T right

i1,...,im
. In view of

Lemma 5.4, the generating function for Bi1,...,im is

(
∑

Y ⊆{1,2,...,m}
(−1)|Y |FTY

(x)

)
FT right

i1,...,im

(x).

It follows that the generating function for A3 is

x2

k1 ,...,km∑

i1,...,im=1


 ∑

Y ⊆{1,2,...,m}

(−1)|Y |FTY
(x)


FT right

i1,...,im
(x).

Add the generating functions for A1, A2 and A3 to obtain (35). 2

The case of (35) in which |T | = 1 will prove useful, so we single it out here.

Corollary 5.6 Suppose π = α1⊕· · ·⊕αk is a permutation, where α1, . . . , αk are direct sum
indecomposable. Then

Fπ(x) = 1 + xFβ(x) + x2

k∑

i=1

(
Fα1⊕···⊕αi

(x)− Fα1⊕···⊕αi−1
(x)
)
Fαi⊕···⊕αk

(x). (36)

Here β = π if α1 6= 1 and β = α2 ⊕ · · · ⊕ αk if α1 = 1.

Proof. Set T = {π} in Theorem 5.5. 2

Observe that if π 6= π or π is not direct sum indecomposable then (36) allows one to
express Fπ(x) in terms of Fσ(x) for various σ with |σ| < |π|. If π = π and π is direct

sum indecomposable then one can solve (36) to find that Fπ(x) =
∞∑

n=0

|In(3412)|xn. Since

In(3412, π) ⊆ In(3412), we have the following result, which can also be shown with a routine
induction argument.

Proposition 5.7 If π = π and π is direct sum indecomposable then In(3412, π) = In(3412)
for all n ≥ 0.

6 Generating Functions Involving Chebyshev Polyno-

mials

In this section we use (36) to find Fπ(x) for various π. In each case we express Fπ(x) in
terms of Chebyshev polynomials of the second kind. We begin with Fk...21(x).
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Theorem 6.1 For all k ≥ 1, the following hold.

F(2k)...21(x) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) (37)

F(2k−1)...21(x) =
Uk−1

(
1−x
2x

)
+ Uk−2

(
1−x
2x

)

x
(
Uk

(
1−x
2x

)
+ Uk−1

(
1−x
2x

)) (38)

Proof. To prove (37), we argue by induction on k. It is routine to verify that the result holds
for k = 1, so assume it holds for k − 1. Set π = (2k) . . . 21 in (36) and solve the resulting
equation for F(2k)...21(x) to obtain

F(2k)...21(x) =
1

1 − x − x2F(2k−2)...21(x)
.

Now use induction to eliminate F(2k−2)...21(x) and simplify the result to obtain

F(2k)...21(x) =
Uk−1

(
1−x
2x

)

(1 − x)Uk−1

(
1−x
2x

)
− xUk−2

(
1−x
2x

).

Finally, use (19) to simplify the denominator and obtain (37).
The proof of (38) is similar to the proof of (37). 2

Remark Lines (37) and (38) can also be obtained using ϕ and the methods of Section 4.

Arguing by induction as in the proof of (37) and using Simion and Schmidt’s result [SiS85,
Prop. 6] that F312(x) = F231(x) = 1−x

1−2x
, we obtain the following result.

Theorem 6.2 For all k ≥ 3, the following holds.

F(k+1) k...4231(x) = Fk...312(x) =
Uk−2

(
1−x
2x

)

xUk−1

(
1−x
2x

) (39)

The fact that F(k+1) k...4231(x) = Fk...312(x) implies that In(3412, (k + 1) k . . .4231) and
In(3412, k . . .312) have the same cardinality. Since (k+1) k . . .4231 contains a subsequence
of type k . . .312 we also have In(3412, k . . . 312) ⊆ In(3412, (k + 1) k . . .4231), and it follows
that In(3412, k . . . 312) = In(3412, (k + 1) k . . . 4231). As we show next, this is a special case
of a more general phenomenon.

Theorem 6.3 Suppose σ is a nonempty permutation which does not end with 1. Then for
all n ≥ 0,

In(3412, 1 	 σ) = In(3412, 1 	 σ 	 1). (40)

Proof. It is clear that if π avoids 1 	 σ then π avoids 1 	 σ 	 1, so In(3412, 1 	 σ) ⊆
In(3412, 1 	 σ 	 1).

Now suppose π contains 1	 σ; we show π contains 1	 σ 	 1. We argue by induction on
|π|.

The result is vacuously true if |π| ≤ |σ|, and it follows for |π| = |σ|+ 1 since 1 	 σ does
not end with 1, and so is not an involution. Now suppose the result holds for all involutions
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in I(3412) of length less than |π|. If π begins with 1 then the result follows by induction,
in view of Proposition 2.9(i). If π begins with j ≥ 2 then by Proposition 2.9(ii) there exist
π1 ∈ Ij−2(3412) and π2 ∈ In−j(3412) such that π = (1 	 π1 	 1) ⊕ π2. Since 1 	 σ begins
with its greatest entry, it is entirely contained in either 1 	 π1 	 1 or π2. In the latter case
the result follows by induction. In the former, 1 	 σ is contained in 1 	 π1, since σ does not
end with 1. It follows that 1 	 σ 	 1 is contained in 1 	 π1 	 1, as desired. 2

We now turn our attention to Fk...4213(x), Fk...4132(x), and Fk...4123(x).

Theorem 6.4 For all k ≥ 3, the following holds.

Fk...4213(x) = Fk...4132(x) =
Uk−2

(
1−x
2x

)
+ Uk−3

(
1−x
2x

)

x
(
Uk−1

(
1−x
2x

)
+ Uk−2

(
1−x
2x

)) (41)

Proof. First observe that if we apply the reverse complement map to k . . .4213 and take
the inverse of the result we obtain k . . .4132, so Fk...4213(x) = Fk...4132(x).

To show that Fk...4132(x) is equal to the quantity on the right, first observe that the result
holds for k = 3 by [GM02, Ex. 2.18]. Now argue by induction on k, using (36) and (19). 2

Theorem 6.5 For all k ≥ 3, the following holds.

Fk...4123(x) =
(1 − x + x3)Uk−3

(
1−x
2x

)
+ (x − 1)xUk−4

(
1−x
2x

)

(1 − x + x3)xUk−2

(
1−x
2x

)
+ (x − 1)x2Uk−3

(
1−x
2x

)

Proof. This is similar to the second half of the proof of Theorem 6.4. 2

The permutations 213 and 123 are examples of layered permutations, which are defined
as follows.

Definition 6.6 For all n ≥ 0, set [n] = n (n− 1) . . . 21. Now fix n ≥ 1 and let l1, l2, . . . , lm

denote a sequence such that li ≥ 1 for 1 ≤ i ≤ m and
m∑

i=1

li = n. We write [l1, l2, . . . , lm] to

denote the permutation in Sn given by

[l1, l2, . . . , lm] = [l1] ⊕ · · · ⊕ [lm].

We call a permutation layered whenever it has the form [l1, . . . , lm] for some sequence l1, . . . , lm.

Observe that if m ≥ 2 then [l1, . . . , lm] = [l1, . . . , lm]. In view of (36), (37), and (38), the
generating function F[l1,...,lm](x) can be expressed in terms of Chebyshev polynomials of the
second kind for any layered permutation [l1, . . . , lm]. For example, when m = 2 we have the
following result.

Theorem 6.7 For all k, l ≥ 1 we have

F[k,l](x) = F[k+l](x). (42)

To prove Theorem 6.7, we need the following well-known result concerning Chebyshev
polynomials.
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Lemma 6.8 For all k, l ≥ −1 and all w ≥ 0 we have

Uk+wUl+w − UkUl = Uw−1Uk+l+w+1. (43)

Here we abbreviate U∗ = U∗
(

1−x
2x

)
.

Proof. We argue by induction on k + w.
Line (43) is immediate for k + w = −1 and k + w = 0 so suppose k + w > 0 and (43)

holds for k + w − 1 and k + w − 2. Divide (19) by x and use the result to eliminate Uk+w

and Uk on the left side of (43). Now use induction and (19) twice each to obtain (43). 2

We now prove Theorem 6.7.
Proof of Theorem 6.7. We consider six cases: k = 1 and l is even, k = 1 and l is odd, k and
l are both even, k is even and l is odd, k > 1 is odd and l is even, and k > 1 and l are both
odd. All six cases are similar, so we only give the details for the case in which k > 1 and l
are both odd.

Set π = [2k+1, 2l−1] in (36) and solve the resulting equation for F[2k+1,2l−1](x) to obtain

F[2k+1,2l−1](x) =
1 − x2F[2k−1](x)F[2l−1](x)

1 − x − x2F[2k−1](x) − x2F[2l−1](x)
.

Now use (38) to eliminate F[2k−1](x) and F[2l−1](x), clear denominators, and use (19) to
simplify the denominator of the result, obtaining

F[2k+1,2l−1](x) =
(Uk + Uk−1)(Ul + Ul−1) − (Uk−1 + Uk−2)(Ul−1 + Ul−2)

x(Uk+1 + Uk)(Ul + Ul−1) − x(Uk + Uk−1)(Ul + Ul−1)
.

Here we abbreviate U∗ = U∗
(

1−x
2x

)
. Next use (43) with w = 1 four times each in the

numerator and denominator to obtain

F[2k+1,2l−1](x) =
Uk+l + 2Uk+l−1 + Uk+l−2

x (Uk+l+1 + 2Uk+l + Uk+l−1)
.

Rearranging (19) we find that Un + Un−1 + Un−2 = 1
x
Un−1 for all n ≥ 1. Use this to simplify

our last expression for F[2k+1,2l−1](x), obtaining the right side of (37) with k replaced by k+ l,
as desired. 2

When m ≥ 3 the generating function F[l1,...,lm](x) does not reduce quite as nicely as it
does when m = 2. For example, using the same techniques as in the proof of Theorem 6.7
one can prove that for all k1, k2, k3 ≥ 1,

F[2k1,2k2,2k3](x) =
Uk1+k2+k3Uk1+k2+k3−1 + Uk1+k2−1Uk1+k3−1Uk2+k3−1

xUk1+k2Uk1+k3Uk2+k3

. (44)

Nevertheless, (42) and (44) suggest the following conjecture.

Conjecture 6.9 For all m ≥ 1 and all l1, . . . , lm ≥ 1, the generating function F[l1,...,lm](x)
is symmetric in l1, . . . , lm.

This conjecture has been verified for m ≤ 4 and li ≤ 20, as well as for m = 5 and li ≤ 11,
using a Maple program.

20



7 Directions for Future Research

1. For any permutation π 6= k . . .21, let Gπ(x) denote the generating function for the set
of involutions which avoid 3412 and contain exactly one subsequence of type π. Com-
pute Gπ(x) or find a recursive formula for Gπ(x). More generally, find the generating
function for the set of involutions which avoid 3412 and contain exactly r subsequences
of type π.

2. In view of (37) and (39) we have

|In(3412, (2k) . . . 21)| = |In(3412, (k + 2) (k + 1) . . . 4231)|

for all n ≥ 0. Similarly, in view of (38) and (41) we have

|In(3412, (2k + 1) . . . 21)| = |In(3412, (k + 2) (k + 1) . . . 4132)|

for all n ≥ 0. Give combinatorial proofs of these identities.

3. In view of (42) we have

|In(3412, [k, l])| = |In(3412, [k + l])|

for all k, l ≥ 1 and all n ≥ 0. Give a combinatorial proof of this identity.

4. Prove Conjecture 6.9, which says that F[l1,...,lm](x) is symmetric in l1, . . . , lm.
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