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Abstract

We use combinatorial and generating function techniques to enumerate various sets
of involutions which avoid 231 or contain 231 exactly once. Interestingly, many of these
enumerations can be given in terms of k-generalized Fibonacci numbers.
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1 Introduction and Notation

Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation, and suppose
π ∈ Sn. We say π is an involution whenever π(π(i)) = i for all i, 1 ≤ i ≤ n, and we write
In to denote the set of involutions in Sn. Now suppose π ∈ Sn and σ ∈ Sk. We say π
avoids σ whenever π contains no subsequence with all of the same pairwise comparisons
as σ. For example, the permutation 214538769 avoids 312 and 2413, but it has 2586 as a
subsequence so it does not avoid 1243. If π avoids σ then σ is sometimes called a pattern
or a forbidden subsequence and π is sometimes called a restricted permutation or a pattern-
avoiding permutation. In this paper we will be interested in permutations which avoid several
patterns, so for any set R of permutations we write Sn(R) to denote the elements of Sn which
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avoid every element of R. For any set R of permutations we take Sn(R) to be the empty set
whenever n < 0 and we take S0(R) to be the set containing only the empty permutation.
When R = {π1, π2, . . . , πr} we often write Sn(R) = Sn(π1, π2, . . . , πr). We will also be
interested in involutions which avoid several patterns, so for any set R of permutations we
write In(R) to denote the set of involutions in Sn(R).

For all k ≥ 1 and all n, we write Fk,n to denote the number of tilings of a 1 × (n − 1)
rectangle with tiles of size 1×1, 1×2, . . . , 1×k. Observe that Fk,n = 0 for all n ≤ 0, Fk,1 = 1,

and Fk,n =
∑k

i=1 Fk,n−i for all n ≥ 2. It follows that the ordinary generating function for
Fk,n is given by

∞∑

n=0

Fk,nx
n =

x

1 − x − x2 − . . . − xk
(k ≥ 1). (1)

Since F2,n is the ordinary Fibonacci number Fn for all n ≥ 0, we refer to the numbers Fk,n

as the k-generalized Fibonacci numbers. (cf. [3])
Restricted permutations were first connected with Fibonacci numbers by Simion and

Schmidt, who showed in [11, Prop. 15] that

|Sn(132, 213, 123)| = Fn+1 (n ≥ 0).

The present authors generalized this result extensively in [2], where they gave several families
of sets of restricted permutations which can be counted in terms of k-generalized Fibonacci
numbers. For example, the present authors showed in [2] that

|Sn(132, 213, βa,b,c)| =
a+c−1∑

k=1

(
n − 1

k − 1

)
+

n∑

k=a+c

(
k − 1

a + c − 1

)
Fb−1,n−k+1, (2)

where βa,b,c is the permutation in Sa+b+c given by

βa,b,c = a + b + c, a + b + c − 1, . . . , b + c + 1, c + 1, c + 2, . . . , b + c, c, c − 1, . . . , 2, 1.

In fact, |Sn(132, 213, τ)| can be expressed in terms of k-generalized Fibonacci numbers for
every τ ∈ Sn(132, 213), as Mansour demonstrated in [8, Thm. 8] by expressing the generating
function for |Sn(132, 213, τ)| as a determinant of a matrix of generating functions for various
k-generalized Fibonacci numbers.

Although they were initially studied through the Robinson-Schensted correspondence,
restricted involutions have recently begun to receive attention as objects of study in their
own right. In [10] Regev provided an asymptotic formula for |In(12 . . . k)| and showed that
|In(1234)| = Mn, where Mn is the nth Motzkin number, which may be defined by M0 = 1 and
Mn = Mn−1+

∑n−2
i=0 MiMn−i−2 for n ≥ 1. In [4] Gessel enumerated In(12 . . . k), and Gouyou–

Beauchamps [5] has given bijective proofs of exact formulas for |In(12345)| and |In(123456)|.
Guibert [6] has established bijections between 1-2 trees with n edges and several sets of
restricted involutions, including In(3412) and In(4321). This latter bijection leads, by way
of the Robinson-Schensted correspondence, to a bijection between 1-2 trees with n edges and
In(1234). Guibert has also given [6] a bijection between vexillary involutions of length n (that
is, In(2143)) and In(1243). More recently, Guibert, Pergola and Pinzani [7] gave a bijection
between 1-2 trees with n edges and vexillary involutions of length n. Combining all of these
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results, we find that |In(1234)| = |In(3412)| = |In(4321)| = |In(2143)| = |In(1243)| = Mn.
At this writing it is an open problem to prove the conjecture of Guibert [6] that |In(1432)| =
Mn.

In this paper we use combinatorial and generating function techniques to enumerate
various sets of involutions which avoid 231 or contain 231 exactly once. It turns out that
many of these enumerations can be given in terms of k-generalized Fibonacci numbers. In
section 2 we use results of Simion and Schmidt [11], Mansour [8], and the current authors
[2] to explain how to enumerate involutions which avoid 231 and another pattern. In section
3 we enumerate involutions which avoid 231 and contain a given pattern. In section 4 we
enumerate involutions which contain 231 exactly once and avoid another pattern. In section
5 we enumerate involutions which contain 231 exactly once and contain another pattern.

2 Involutions Which Avoid 231 and Avoid Another

Pattern

In this section we briefly consider In(231, τ), where τ ∈ Sk. Our consideration will be
brief because these sets of permutations have already been extensively studied in a slightly
different guise. To describe this different guise, we begin with some notation.

Definition 2.1 Fix n ≥ 1 and let l1, l2, . . . , lm denote a sequence such that li ≥ 1 for
1 ≤ i ≤ m and

∑m
i=1 li = n. We write [l1, l2, . . . , lm] to denote the permutation given by

[l1, l2, . . . , lm] = l1, l1 − 1, . . . , 1, l2 + l1, l2 + l1 − 1, . . . , l1 + 1, . . . , n, n − 1, . . . , n − lm + 1.

We call a permutation layered whenever it has the form [l1, . . . , lm] for some sequence l1, . . . , lm.

We remark that layered permutations have also been studied in [1] and [9].
Associating the layered permutation [l1, . . . , lm] with the tiling 1×l1, 1×l2, 1×l3, . . . , 1×lm

of a rectangle of size 1 × n, we obtain a natural bijection between layered permutations of
length n and tilings of a 1 × n rectangle with rectangles of size 1 × 1, 1 × 2, 1 × 3, . . ..

Since 231 and 312 are (group-theoretic) inverses of each other, and since every involution
is its own inverse, the number of subsequences of type 231 in an involution π is equal to the
number of subsequences of type 312 in π. In particular, In(231) = In(312) for all n ≥ 0. As
Simion and Schmidt explain in the remarks following the proofs of [11, Prop. 6] and [11,
Prop. 12], the set In(231) = In(312) is also connected with layered permutations, as follows.

Proposition 2.2 For all n ≥ 0, the sets In(231), In(312), and Sn(231, 312) are all equal to
the set of layered permutations of length n.

It follows that In(231, τ) = Sn(231, 312, τ) = In(312, τ) for any permutation τ . Writing
τ r to denote the permutation obtained by writing the entries of τ in reverse order, we find
that Sn(231, 312, τ) = Sn(132, 213, τ r) for any permutation τ . These observations allow us
to translate results such as (2) into enumerations of In(213, τ) for various permutations τ .
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3 Involutions Which Avoid 231 and Contain Another

Pattern

In this section we consider those involutions in In(231) which contain a given pattern τ . We
begin by setting some notation.

Definition 3.1 For all n ≥ 0, all r ≥ 0, and all permutations τ , we write Ir
n(231; τ) to

denote the set of involutions in In(231) which contain exactly r subsequences of type τ . We
write Ir

231;τ (x) to denote the generating function given by

Ir
231;τ (x) =

∞∑

n=0

|Ir
n(231; τ)|xn.

We often abbreviate I0
231;τ (x) by I231;τ (x). We write I231;τ (x, y) to denote the generating

function given by

I231;τ (x, y) =
∞∑

n=0

∞∑

r=0

|Ir
n(231; τ)|xnyr.

In view of Proposition 2.2, if τ is not layered then I231;τ (x, y) = 0, so it is reasonable
to ask for a closed form expression for I231;τ (x, y) for any layered permutation τ . Such an
expression appears to be difficult to obtain, so we content ourselves here with a closed form
expression for I231;k...21(x, y).

Theorem 3.2 For all k ≥ 1, we have

I231;k...21(x, y) =
1

1 −
∑
j≥1

xjy(j
k)

. (3)

Proof. To obtain (3), we count tilings of a 1×n rectangle with tiles of size 1×1, . . . , 1×(k−1)
according to the length of the right-most tile. The generating function for the empty tiling
is 1. The generating function for those tilings whose right-most tile has length j ≥ 1 is

xjy(j
k)I231;k...21(x, y). Combining these observations, we find that

I231;k...21(x, y) = 1 +
∑

j≥1

xjy(j
k)I231;k...21(x, y).

Solve this equation for I231;k...21(x, y) to obtain (3). 2

For r ≤ k one can now obtain Ir
231;k...21(x) from (3) by expanding the right side in powers

of y and finding the coefficient of yr. In lieu of this calculation, we use a combinatorial
approach to obtain Ir

231;k...21(x).

Theorem 3.3 For all k and r such that 0 ≤ r ≤ k and all n ≥ 0 we have

|Ir
n(231; k . . . 21)| =

∑

s0,...,sr

r∏

i=0

Fk−1,si+1, (4)
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where the sum on the right is over all sequences s0, . . . , sr of nonnegative integers such that∑r
i=0 si = n − kr. Moreover,

Ir
231;k...21(x) =

xkr

(1 − x − . . . − xk−1)r+1
. (5)

Proof. Since r ≤ k, the tilings which correspond to the permutations in Ir
n(231; k . . . 21) are

exactly those tilings of a 1 × n rectangle which contain precisely r tiles of size 1 × k and no
tiles of length k +1 or more. To build such a tiling, first order the tiles of size 1× k; there is
one way to do this. Now fix the sizes s0, . . . , sr of the gaps between these tiles; observe that
we must have

∑r
i=0 si = n − kr. Finally, tile each of these gaps with tiles of length at most

k − 1; there are
∏r

i=0 Fk−1,si+1 ways to do this. Combine these observations to obtain (4).
The proof of (5) is similar to the proof of (4). 2

Using the same combinatorial techniques, we now compute I1
231;τ (x) for any layered per-

mutation τ .

Theorem 3.4 Fix a layered permutation [l1, . . . , lm]. Set k0 = l1 − 1, km = lm − 1, and
ki = min(li − 1, li+1 − 1) for 1 ≤ i ≤ m − 1. Then we have

|I1
n(231; [l1, . . . , lm])| =

∑

s0,...,sm

m∏

i=0

Fki,si+1, (6)

where the sum is over all sequences of nonnegative integers such that
∑m

i=0 si = n−
∑m

i=1 li.
Moreover,

I1
231;[l1,...,lm](x) = x

∑m
i=1 li

m∏

i=0

1

1 − x − x2 − . . . − xki
. (7)

Proof. This is similar to the proof of Theorem 3.3. 2

Using Theorem 3.4, we now highlight a family of involutions which are enumerated by
k-generalized Fibonacci numbers.

Corollary 3.5 For all k ≥ 1, all l ≥ 1, and all n ≥ 0, the number of involutions in In(231)
which contain exactly one subsequence of type [1k, l] is given by Fl−1,n−k−l+1.

Proof. Set m = k + 1, li = 1 for 1 ≤ i ≤ k, and lk+1 = l in Theorem 3.4 and observe that
F0,1 = 1 and F0,n = 0 whenever n 6= 1. 2

4 Involutions Which Contain 231 Once and Avoid An-

other Pattern

In this section we consider those involutions in In which contain exactly one subsequence of
type 231 and avoid an additional pattern. We begin by setting some notation.
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Definition 4.1 For all n ≥ 0 and any permutation τ , we write Jn(τ) to denote the set of
involutions in In which avoid τ and which contain exactly one subsequence of type 231. We
write J231;τ (x) to denote the generating function given by

J231;τ (x) =
∞∑

n=0

|Jn(τ)|xn.

As we did for In(231) in Section 2, we give a constructive bijection between the set of
involutions of length n which contain exactly one subsequence of type 231 and a certain set
of tilings of a rectangle of size 1 × n.

Proposition 4.2 Fix n ≥ 0. Then there exists a constructive bijection between the set of
involutions in In which contain exactly one subsequence of type 231 and the set of tilings of
a 1×n rectangle using exactly one red rectangle of size 1×4 and blue rectangles of size 1×1,
1 × 2, . . ..

Proof. Suppose we are given such a tiling; we construct the corresponding involution as
follows. First number the squares 1, 2, . . . , n from left to right. In each blue tile, reverse the
order of the entries. If the left-most entry of the red tile is a, then put the entries of the red
tile in the order a + 3, a + 1, a + 2, a. It is routine to verify that the resulting permutation
is an involution which contains exactly one subsequence of type 231 and that the given map
is injective. Therefore it is sufficient to show that the given map is surjective. To do this,
fix π ∈ In; we argue by induction on n. It is routine to verify the result when n ≤ 4, so we
assume n ≥ 5 and that the result holds for all k ≤ n − 1. Fix j such that π(j) = n; since
π is an involution we also have π(n) = j. We consider two cases: either n appears in the
subsequence of type 231 or n does not appear in the subsequence of type 231.

If n does not appear in the subsequence of type 231 then there exist permutations π1 and
π2, exactly one of which contains exactly one subsequence of type 231, such that π = π1, n, π̃2.
Here π̃2 is the sequence obtained by adding j − 1 to every entry of π2. In this case the result
follows from our bijection involving In(231) and induction.

Now suppose the subsequence given by π(a), n, π(b) has type 231. If π(b) > j then
π(a) > π(b) > j and the subsequence π(a), n, j of π is a second subsequence of type 231,
which is a contradiction. If π(b) = j then π(a) > j. Therefore, since π is an involution, a
appears to the right of n and a < π(a). It follows that π(a), n, a is a second subsequence of
type 231, which is a contradiction. If π(b) < j then b appears to the left of n, since π is an
involution. It follows that b, n, j is a second subsequence of type 231, which is a contradiction.
Combining these observations, we find that n does not appear in the subsequence of type
231.

It follows that the given map is surjective, as desired. 2

Using Proposition 4.2, we now enumerate those involutions in In which contain exactly
one subsequence of type 231.

Theorem 4.3 The number of the involutions in Sn which contain exactly one subsequence
of type 231 is given by (n − 1)2n−6 for all n ≥ 5.

Proof. Count the corresponding tilings in three cases: the red tile is at the far left, the red
tile is at the far right, or there are blue tiles on both sides of the red tile. There are 2n−5
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tilings of the first type, 2n−5 tilings of the second type, and
∑n−5

i=1 2i−12n−i−5 = (n − 5)2n−6

tilings of the third type. Combine these observations to obtain the desired result. 2

We now use Proposition 4.2 to enumerate Jn(k . . . 21). We observe that every involution
in Sn which contains exactly one pattern of type 231 contains a pattern of type 4231, and
therefore a pattern of type 321. With this in mind, we consider Jn(k . . . 21) for k ≥ 4.

Theorem 4.4 Fix k ≥ 4. Then for all n ≥ 0 we have

|Jn(k . . . 21)| =
n−4∑

i=0

Fk−1,i+1Fk−1,n−i−3. (8)

Moreover,

J231;k...21(x) =
x4

(1 − x − . . . − xk−1)2
. (9)

Proof. This is similar to the proof of Theorem 3.3, using Proposition 4.2. 2

We conclude this section by giving a recursive procedure for computing J231;τ (x) when τ
is a layered permutation.

Theorem 4.5 Fix positive integers l1, . . . , lm and l. If l ≤ 3 then we have

J231;[l1,...,lm,l](x) =
1

1 − x − . . . − xl−1

(
xl

1 − x
J231;[l1,...,lm](x) + x4I231;[l1,...,lm](x)

)
. (10)

If l ≥ 4 then we have

J231;[l1,...,lm,l](x) =
1

1 − x − . . . − xl−1

(
xl

1 − x
J231;[l1,...,lm](x) + x4I231;[l1,...,lm,l](x)

)
. (11)

Proof. This is similar to the proof of Theorem 3.2, using Proposition 4.2. 2

We remark that it is clear from results given in [8] and (9) – (11) that for any layered
permutation τ , the set Jn(τ) can be enumerated in terms of k-generalized Fibonacci numbers.

5 Involutions Which Contain 231 Once and Contain

Another Pattern

In this section we consider those involutions in In which contain exactly one subsequence of
type 231 and which also contain a given pattern. We begin by setting some notation.

Definition 5.1 For all n ≥ 0, all r ≥ 0, and any permutation τ , we write Jr
n(τ) to denote

the set of involutions in In which contain exactly one subsequence of type 231 and exactly r
subsequences of type τ . We write Jr

231;τ (x) to denote the generating function given by

Jr
231;τ (x) =

∞∑

n=0

|Cr
n(τ)|xn.
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We write J231;τ (x, y) to denote the generating function given by

J231;τ (x, y) =
∞∑

n=0

∞∑

r=0

|Cr
n(τ)|xnyr.

As with I231;τ (x, y), finding a closed form expression for J231;τ (x, y) appears to be difficult
for general τ , so we content ourselves here with a closed form expression for J231;k...21(x, y).

Theorem 5.2 For all k ≥ 4 we have

J231;k...21(x, y) =
x4

(
1 −

∑
j≥1 xjy(j

k)
)2 . (12)

Proof. This is similar to the proof of Theorem 3.2, using Proposition 4.2. 2

For r ≤ k one can now obtain Jr
231;k...21(x) from (12) by expanding the right side in powers

of y and finding the coefficient of yr. In lieu of this calculation, we use a combinatorial
approach to obtain Jr

231;k...21(x).

Theorem 5.3 For all k and r such that 0 ≤ r ≤ k and all n ≥ 0 we have

|Jr
n(k . . . 21)| = (r + 1)

∑

s0,...,sr+1

r+1∏

i=0

Fk−1,si+1, (13)

where the sum on the right is over all sequences s0, . . . , sr+1 of nonnegative integers such
that

∑r+1
i=0 si = n − kr − 4. Moreover,

Jr
231;k...21(x) =

(r + 1)xkr+4

(1 − x − x2 − . . . − xk−1)r+2
. (14)

Proof. This is similar to the proof of Theorem 3.3, using Proposition 4.2. 2

We conclude the paper by giving a recursive procedure for computing J1
231;τ (x) for any

layered permutation τ .

Theorem 5.4 Fix positive integers l1, . . . , lm and l. If l ≤ 3 then we have

J1
231;[l1,...,lm,l](x) =

xl

1 − x − . . . − xl−1
J1

231;[l1,...,lm](x). (15)

If l ≥ 4 then we have

J1
231;[l1,...,lm,l](x) =

1

1 − x − . . . − xl−1

(
xlJ1

231;[l1,...,lm](x) + x4I1
231;[l1,...,lm,l](x)

)
. (16)

Proof. This is similar to the proof of Theorem 3.2, using Proposition 4.2. 2

We remark that it is clear from (7) and (14) – (16) that for any layered permutation τ ,
the set Jr

n(τ) can be enumerated in terms of k-generalized Fibonacci numbers.
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