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Below is a collection of comments and clarifications for my book An Introduction to Symmetric
Functions and Their Combinatorics. This list is very short right now, because it does not yet
reflect all of the comments and clarifications I have received. However, I am continually adding to
it, and I will post an updated version every few weeks. In addition, I may have misunderstood (or
mistyped) something on this list, so please let me know if anything here looks incorrect.

I would like to thank everyone who has sent me comments and clarifications. I would especially
like to thank Darij Grinberg for his helpful feedback, and for sharing his extensive list of corrections
and comments.

The Definition of a Symmetric Function

In our definition of a symmetric function (Definition 1.19, on page 17) we allow formal power
series of unbounded degree. This is nonstandard: most authors only allow a power series which is
invariant under all permutations of the underlying set of variables to be called a symmetric function

if the degrees of its terms are bounded. Thus, for example,
∞∏
j=1

(1 + xj) is a symmetric function

under our definition but not under the standard definition. For most of the material in the book
this distinction won’t make a difference, and there are examples in Chapter 3 of interesting objects
which are symmetric functions under our definition but not under the standard definition. We
do have to take care when we study the Hall inner product: if we allow unbounded degree then
inner products of some pairs of symmetric functions result in divergent series, and are therefore
undefined.

Infinite Products

In Problem 1.21 (and in the comment above) we have two infinite products of polynomials,
so one might wonder how we can make sense of a product like this, and in particular, how we

define convergence for these products. For us, an infinite product
∞∏
j=1

fj(X), in which each factor

is a polynomial in x1, x2, . . ., converges when we can determine the coefficient of each monomial
in x1, x2, . . .. More precisely, if z is a monomial in x1, x2, . . ., then we write [z]f(X) to denote the

coefficient of z in the formal power series f(X). We say

∞∏
j=1

fj(X) converges whenever the sequence

[z]f1(X), [z](f1(X)f2(X)), [z](f1(X)f2(X)f3(X)), . . . is eventually constant for every monomial z.

This constant is the coefficient of z in

∞∏
j=1

fj(X). Note that this is the definition used by Stanley

[Sta11, p. 7].
In the products in Problem 1.21, each variable appears in finitely many factors, so the coefficient

of each monomial is constant once every factor in which any of its variables appears is included in
the partial product. Therefore, the products both converge.
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Problem 2.9 and the Gale-Ryser Theorem

The result in Problem 2.9 is the Gale-Ryser theorem, and proving it may be more difficult than
solving most of the other problems in this chapter. This result is sometimes stated in terms of the
existence of a matrix of 0s and 1s with specified row and column sums, and sometimes in terms of
the existence of a bipartite graph with specified degree sequences. Proofs are available in several
places, including [Bru06, p. 27] and [Kra96].

A Non-Combinatorial Proof of Proposition 3.3

We can use (3.5) and (2.12) to give an algebraic proof of (3.6), as follows.

k∑
j=1

hk−jpj =

k∑
j=1

hk−j

j∑
m=1

(−1)j+1mej−mhm (by (3.5))

=

k∑
m=1

mhm

k∑
j=m

(−1)j+mhk−jej−m

=

k∑
m=1

mhm

k−m∑
l=0

(−1)lhk−m−lel

= khk (by (2.12))

We can give a similar proof of (3.7) using (3.4) and (2.12).
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